Stochastic calculus and degenerate boundary value problems
Annales de l'Institut Fourier, Volume 42 (1992) no. 3, pp. 541-624.

Consider the boundary value problem (L.P):(h-A)u=f in D, (v-Γ)u=g on D where A is written as A=1/2 i=1 m Y i 2 +Y 0 , and Γ is a general Venttsel’s condition (including the oblique derivative condition). We prove existence, uniqueness and smoothness of the solution of (L.P) under the Hörmander’s condition on the Lie brackets of the vector fields Y i (0im), for regular open sets D with a non-characteristic boundary.

Our study lies on the stochastic representation of u and uses the stochastic calculus of variations for the (A,Γ)-diffusion process in D ¯. Applications to the decomposition of C (D ¯), and to invariant measures are also discussed.

On considère le problème aux limites (L.P):(h-A)u=f dans D, (v-Γ)u=g sur DA s’écrit A=1/2 i=1 m Y i 2 +Y 0 , et où Γ est une condition de Ventcel générale (incluant le problème à dérivée oblique). Nous montrons existence, unicité et régularité de la solution de (L.P) sous la condition de Hörmander portant sur les crochets de Lie des champs de vecteurs Y i (0im), pour des ouverts D réguliers à frontière non caractéristique.

Notre étude repose sur la représentation stochastique de u et utilise le calcul des variations stochastique sur la (A,Γ)-diffusion dans D ¯. Des applications à la décomposition de C (D ¯) ainsi qu’à l’étude des mesures invariantes sont également données.

@article{AIF_1992__42_3_541_0,
     author = {Cattiaux, Patrick},
     title = {Stochastic calculus and degenerate boundary value problems},
     journal = {Annales de l'Institut Fourier},
     pages = {541--624},
     publisher = {Institut Fourier},
     volume = {42},
     number = {3},
     year = {1992},
     doi = {10.5802/aif.1302},
     zbl = {0780.35023},
     mrnumber = {93j:60090},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/aif.1302/}
}
TY  - JOUR
AU  - Cattiaux, Patrick
TI  - Stochastic calculus and degenerate boundary value problems
JO  - Annales de l'Institut Fourier
PY  - 1992
DA  - 1992///
SP  - 541
EP  - 624
VL  - 42
IS  - 3
PB  - Institut Fourier
UR  - http://www.numdam.org/articles/10.5802/aif.1302/
UR  - https://zbmath.org/?q=an%3A0780.35023
UR  - https://www.ams.org/mathscinet-getitem?mr=93j:60090
UR  - https://doi.org/10.5802/aif.1302
DO  - 10.5802/aif.1302
LA  - en
ID  - AIF_1992__42_3_541_0
ER  - 
%0 Journal Article
%A Cattiaux, Patrick
%T Stochastic calculus and degenerate boundary value problems
%J Annales de l'Institut Fourier
%D 1992
%P 541-624
%V 42
%N 3
%I Institut Fourier
%U https://doi.org/10.5802/aif.1302
%R 10.5802/aif.1302
%G en
%F AIF_1992__42_3_541_0
Cattiaux, Patrick. Stochastic calculus and degenerate boundary value problems. Annales de l'Institut Fourier, Volume 42 (1992) no. 3, pp. 541-624. doi : 10.5802/aif.1302. http://www.numdam.org/articles/10.5802/aif.1302/

[1] G. Ben Arous, S. Kusuoka, D. Stroock, The Poisson kernel for certain degenerate elliptic operators, J. Func. Anal., 56 (1984), 171-209. | MR | Zbl

[2] J. M. Bismut, Mécanique aléatoire, Lect. Notes in Math., 866, Springer, Berlin, 1981. | MR | Zbl

[3] J. M. Bismut, Martingales, the Malliavin's calculus and hypoellipticity under general Hörmander's conditions, Z. Wahrsch., 56 (1981), 469-506. | MR | Zbl

[4] J. M. Bismut, The calculus of boundary processes, Ann. Scient. École Normale Sup., 17 (1984), 507-622. | Numdam | MR | Zbl

[5] J. M. Bismut, Last exist decompositions and regularity at the boundary of transition probabilities, Z. Wahrsch., 69 (1985), 65-98. | MR | Zbl

[6] J. M. Bismut, Large deviations and the Malliavin calculus, Progress in Math., 45, Birkhaüser, Boston, 1984. | MR | Zbl

[7] J. M. Bony, Principe du maximum, inégalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés, Ann. Inst. Fourier, 19-1 (1969), 277-304. | Numdam | MR | Zbl

[8] J. M. Bony, P. Courrège, P. Priouret, Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites... Ann. Inst. Fourier, 18-2 (1968), 369-521. | Numdam | MR | Zbl

[9] P. Cattiaux, Thèse de 3e cycle, Univ. Paris XI, 1984.

[10] P. Cattiaux, Hypoellipticité et hypoellipticité partielle pour les diffusions avec une condition frontière, Ann. Inst., H. Poincaré, 22 (1986), 67-112. | Numdam | MR | Zbl

[11] P. Cattiaux, Régularité au bord pour les densités et les densités conditionnelles d'une diffusion réfléchie hypoelliptique, Stochastics, 20 (1987), 309-340. | MR | Zbl

[12] P. Cattiaux, Time reversal of diffusion processes with a boundary condition, Stochastic processes and their Applications, 28 (1988), 275-292. | MR | Zbl

[13] P. Cattiaux, Calcul stochastique et opérateurs dégénérés du second ordre. I Résolvantes, théorème de Hörmander et application, Bull. Sc. Math., 114 (1990), 421-462. | Zbl

[14] P. Cattiaux, Calcul stochastique et opérateurs dégénérés du second ordre. II Problème de Dirichlet, Bull. Sc. Math., 115 (1991), 81-122. | MR | Zbl

[15] J. Chazarain, A. Piriou, Introduction à la théorie des équations aux dérivées partielles linéaires, Gauthier Villars, Paris, 1981. | MR | Zbl

[16] M. Derridj, Un problème aux limites pour une classe d'opérateurs du second ordre hypoelliptiques, Ann. Inst. Fourier, 21-4 (1971), 99-148. | Numdam | MR | Zbl

[17] H. Doss, P. Priouret, Petites perturbations de systèmes dynamiques avec réflexion, Séminaire de Probas. 17, Lect. Notes in Math., 986 (1983), 353-370. | Numdam | MR | Zbl

[18] N. El Karoui, Processus de diffusion associé à un opérateur elliptique dégénéré et à une condition frontière, Thèse, Université Paris VI, 1971.

[19] C. Graham, Thèse 3e cycle, Université Paris VI, 1985.

[20] L. Hörmander, Pseudo differential operators and non elliptic boundary problems, Ann. of Math., 83 (1986), 129-209. | MR | Zbl

[21] L. Hörmander, Hypoelliptic second order differential operators, Acta. Math., 119 (1967), 147-171. | Zbl

[22] Hsu-Pei, Probabilistic approach to the Neumann problem, Comm. on Pure and Applied Math., 38 (1985), 445-472. | MR | Zbl

[23] N. Ikeda, S. Watanabe, Stochastic differential equations and diffusion processes, North Holland, Amsterdam, 1981. | MR | Zbl

[24] H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, Lect. Notes in Math., 1097 (1984), 144-305. | MR | Zbl

[25] R. Leandre, Minoration en temps petit de la densité d'une diffusion dégénérée, preprint, 1987. | MR | Zbl

[26] P. Malliavin, * Stochastic calculus of variations and hypoelliptic operators, Proc. Intern. Symp. S.D.E. of Kyoto, K-Ito ed., (1976), 195-263. | MR | Zbl

P. Malliavin, * Ck hypoellipticity with degeneracy. In "Stochastic Analysis", A. Friedman, M. Pinsky ed., (1978), 199-214 & 327-340. | MR | Zbl

[27] Ma Zhiming, On the probabilistic approach to boundary value problems, preprint, 1986.

[28] B. P. Paneyakh, Some boundary value problems for elliptic equations and the Lie algebras associated with them, Math. USSR Sbornik, 54 (1986), 207-237. | Zbl

[29] P. Priouret, Processus de Markov sur une variété à bord compacte, Ann. Inst. H. Poincaré, 4 (1968), 193-253. | Numdam | MR | Zbl

[30] D. Stroock, Some applications of stochastic calculus to partial differential equations, Lect. Notes in Math., 976 (1983), 267-382. | MR | Zbl

[31] D. Stroock, S. R. S. Varadhan, Diffusion processes with boundary conditions, Comm. on Pure an Applied Math., 24 (1971), 147-225. | MR | Zbl

[32] D. Stroock, S. R. S. Varadhan, On degenerate elliptic-parabolic operators of second order and their associated diffusions, Comm. on Pure and Applied Math., 25 (1972), 651-713. | MR | Zbl

[33] K. Taira, Semi-groups and boundary value problems, Duke Math. Journal, 49 (1982), 287-320. | MR | Zbl

[34] F. Trèves, Topological vector spaces, Distributions and Kernels, Academic Press, New York-London, 1967. | MR | Zbl

[35] A. D. Ventcel, On boundary conditions for multidimensional processes, Theory Prob. Appl., 4 (1959). | MR | Zbl

[36] S. Watanabe, Construction of diffusion processes with Wentzell's boundary conditions... Prob. Theory, Banach Center Pub. 5. Polish Sci. Publ., Warsaw, (1979), 255-271. | MR | Zbl

[37] K. Yosida, Functional Analysis, Springer, Berlin, 1965. | MR | Zbl

[38] Temps locaux. J. Azema, M. Yor, éd. Astérisque SMF, 52-53 (1978). | Zbl

[39] Géodésiques et diffusions en temps petit, Astérisque SMF, 84-85 (1981). | Zbl

Cited by Sources: