We prove unique continuation for solutions of the inequality , a connected set contained in and is in the Morrey spaces , with and . These spaces include for (see [H], [BKRS]). If , the extra assumption of being small enough is needed.
Nous prouvons l’unicité du prolongement pour les solutions de l’inégalité , où est une partie connexe de et appartient aux espaces de Morrey , avec et . Ces espaces contiennent pour (voir L. Hörmander, Comm. PDE, 8 (1983, 21-64 et Barceló, Kenig, Ruiz, Sogge, Ill. J. of Math., 32-2 (1988), 230-245).
@article{AIF_1991__41_3_651_0, author = {Ruiz, Alberto and Vega, Luis}, title = {Unique continuation for the solutions of the laplacian plus a drift}, journal = {Annales de l'Institut Fourier}, pages = {651--663}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {41}, number = {3}, year = {1991}, doi = {10.5802/aif.1268}, mrnumber = {92k:35043}, zbl = {0772.35008}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1268/} }
TY - JOUR AU - Ruiz, Alberto AU - Vega, Luis TI - Unique continuation for the solutions of the laplacian plus a drift JO - Annales de l'Institut Fourier PY - 1991 SP - 651 EP - 663 VL - 41 IS - 3 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.1268/ DO - 10.5802/aif.1268 LA - en ID - AIF_1991__41_3_651_0 ER -
%0 Journal Article %A Ruiz, Alberto %A Vega, Luis %T Unique continuation for the solutions of the laplacian plus a drift %J Annales de l'Institut Fourier %D 1991 %P 651-663 %V 41 %N 3 %I Institut Fourier %C Grenoble %U http://www.numdam.org/articles/10.5802/aif.1268/ %R 10.5802/aif.1268 %G en %F AIF_1991__41_3_651_0
Ruiz, Alberto; Vega, Luis. Unique continuation for the solutions of the laplacian plus a drift. Annales de l'Institut Fourier, Volume 41 (1991) no. 3, pp. 651-663. doi : 10.5802/aif.1268. http://www.numdam.org/articles/10.5802/aif.1268/
[BKRS] Weighted Sobolev inequalities and unique continuation for the Laplaciaan plus lower order terms, III. J. of Math., 32, n.2 (1988), 230-245. | MR | Zbl
, , , ,[C] Proprietá di inclusione per spazi di Morrey, Ricerche Mat., 12 (1963), 67-896. | MR | Zbl
,[CS] Unique continuation for ∆ + V and the C. Fefferman-Phong class, preprint. | Zbl
, ,[ChR] Uniform L2 weighted inequalities, Proc. A.M.S., to appear. | Zbl
, ,[ChF] A remark on a paper by C. Fefferman, Proc. A.M.S., (Feb. 1990), 407-409. | MR | Zbl
, ,[FeP] Lower bounds for Schrödinger equations, Journées Eqs. aux deriv. partielles, St. Jean de Monts, 1982. | Numdam | Zbl
, ,[GL] Unique continuation for elliptic operators; a geometric variational approach, Comm. Pure Appl. Math., 40 (1987), 347-366. | MR | Zbl
, ,[H] Uniqueness theorem for second order differential operators, Comm. PDE, 8 (1983), 21-64. | Zbl
,[Je] Carleman inequalities for the Dirac and Laplace operators and unique continuation, Adv. In Math., 63 (1986), 118-134. | MR | Zbl
,[Jo] Calderón-Zygmund operators, pseudo-differential operators, and the Cauchyintegral of Calderón, Lecture Notes in Math., Springer Verlag, 1983. | Zbl
,[K] Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation. Harmonic Analysis and PDE'S, Proceedings El Escorial 1987, Springer Verlag, 1384, (1989), 69-90. | Zbl
,[P] On the theory of Lp,λ spaces, J. Funct. Anal., 4 (1969), 71-87. | MR | Zbl
,[RV] Unique continuation for Schrödinger operators in Morrey spaces, preprint. | Zbl
, ,[St] L(p,λ)-spaces and interpolation, Comm. on Pure and Appl. Math., XVII (1964), 293-306. | MR | Zbl
,[Se] Oscillatory integrals in Fourier Analysis. In: Beijing Lectures in Harmonic Analysis, Princeton Univ. Press, 112 (1986), 307-355. | MR | Zbl
,[T] A restriction theorem for the Fourier transform, Bull. AMS, (1975), 477-478. | MR | Zbl
,Cited by Sources: