An universal analytic structure is construted on the set of (singular) holomorphic foliations on a normal compact space. Such a foliation is by definition a coherent subsheaf of the holomorphic tangent sheaf stable by the Lie-bracket
On munit d’une structure analytique universelle l’ensemble des feuilletages holomorphes sur un espace compact normal. Par définition un feuilletage holomorphe est un sous-faisceau cohérent du faisceau tangent holomorphe stable par le crochet de Lie.
@article{AIF_1987__37_2_33_0, author = {Pourcin, Genevi\`eve}, title = {Deformations of coherent foliations on a compact normal space}, journal = {Annales de l'Institut Fourier}, pages = {33--48}, publisher = {Institut Fourier}, address = {Grenoble}, volume = {37}, number = {2}, year = {1987}, doi = {10.5802/aif.1085}, mrnumber = {88k:32057}, zbl = {0587.32037}, language = {en}, url = {http://www.numdam.org/articles/10.5802/aif.1085/} }
TY - JOUR AU - Pourcin, Geneviève TI - Deformations of coherent foliations on a compact normal space JO - Annales de l'Institut Fourier PY - 1987 SP - 33 EP - 48 VL - 37 IS - 2 PB - Institut Fourier PP - Grenoble UR - http://www.numdam.org/articles/10.5802/aif.1085/ DO - 10.5802/aif.1085 LA - en ID - AIF_1987__37_2_33_0 ER -
Pourcin, Geneviève. Deformations of coherent foliations on a compact normal space. Annales de l'Institut Fourier, Volume 37 (1987) no. 2, pp. 33-48. doi : 10.5802/aif.1085. http://www.numdam.org/articles/10.5802/aif.1085/
[1] Structure of foliation singularities, Advances in Math., 15 (1975), 361-374. | MR | Zbl
,[2] Holomorphe blatterungen mit singularitäten, Math. Gottingensis, heft 5 (1985).
and ,[3] Faisceaux analytiques cohérents, C.I.M.E., Edizioni Cremonese, 1963. | Zbl
,[4] Le problème des modules pour les sous-espaces analytiques..., Ann. Inst. Fourier, XVI, Fasc. 1 (1966), 1-96. | Numdam | Zbl
,[5] Frobenius avec singularités-codimension 1, Pub I.H.E.S., n°46 (1976). | Numdam | MR | Zbl
,[6] Sous-espaces privilégiés d'un polycylindre, Ann. Inst. Fourier, XXV, Fasc. 1 (1975), 151-193. | Numdam | MR | Zbl
,[7] Gap-sheaves and extension of coherent analytic subsheaves, Lect. Notes, 172 (1971). | MR | Zbl
et ,[8] Singularities of complex analytic foliations, Proceedings of Symposia in Pure mathematics, Vol. 40 (1983), Part.2 | MR | Zbl
,Cited by Sources: