On the non existence of non negative solutions to a critical Growth-Fragmentation Equation
Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 1, pp. 177-220.

A growth fragmentation equation with constant dislocation density measure is considered, in which growth and division rates balance each other. This leads to a simple example of equation where the so called Malthusian hypothesis (M + ) of J. Bertoin and A. Watson [8] is not necessarily satisfied. It is proved that, as it was first suggested by these authors, when that happens, no global non negative weak solution, satisfying some boundedness condition on several of its moments, exists. Non existence of local non negative solutions satisfying a similar condition, is proved to happen also. When a local non negative solution exists, the explicit expression is given.

Nous considérons une équation de croissance fragmentation dont les taux de croissance et de fragmentation s’équilibrent et dont le noyau de dislocation est constant. Suivant la valeur de cette constante l’équation vérifie ou non la condition (M + ) introduite par J. Bertoin et A. Watson dans [8]. Nous démontrons que, comme ces auteurs l’avaient suggéré, lorsque la condition n’est pas vérifiée l’équation ne possède pas de solution globale non négative dont les moments satisfont certaines estimations naturelles. Nous montrons également que l’équation peut aussi ne pas avoir de solution locale vérifiant de telles estimations. Lorsqu’une telle solution existe, locale ou globale, une formule explicite est obtenue.

Received:
Accepted:
Published online:
DOI: 10.5802/afst.1629
Escobedo, Miguel 1

1 Departamento de Matemáticas, Universidad del País Vasco UPV/EHU, Apartado 644, 48080 Bilbao, Spain
@article{AFST_2020_6_29_1_177_0,
     author = {Escobedo, Miguel},
     title = {On the non existence of non negative solutions to a critical {Growth-Fragmentation} {Equation}},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {177--220},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 29},
     number = {1},
     year = {2020},
     doi = {10.5802/afst.1629},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/afst.1629/}
}
TY  - JOUR
AU  - Escobedo, Miguel
TI  - On the non existence of non negative solutions to a critical Growth-Fragmentation Equation
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2020
SP  - 177
EP  - 220
VL  - 29
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - http://www.numdam.org/articles/10.5802/afst.1629/
DO  - 10.5802/afst.1629
LA  - en
ID  - AFST_2020_6_29_1_177_0
ER  - 
%0 Journal Article
%A Escobedo, Miguel
%T On the non existence of non negative solutions to a critical Growth-Fragmentation Equation
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2020
%P 177-220
%V 29
%N 1
%I Université Paul Sabatier, Toulouse
%U http://www.numdam.org/articles/10.5802/afst.1629/
%R 10.5802/afst.1629
%G en
%F AFST_2020_6_29_1_177_0
Escobedo, Miguel. On the non existence of non negative solutions to a critical Growth-Fragmentation Equation. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 29 (2020) no. 1, pp. 177-220. doi : 10.5802/afst.1629. http://www.numdam.org/articles/10.5802/afst.1629/

[1] Handbook of mathematical functions with formulas, graphs, and mathematical tables (Abramowitz, Milton; Stegun, Irene A., eds.), National Bureau of Standards Applied Mathematics Series, 55, U.S. Department of Commerce, 1964, xiv+1046 pages | MR | Zbl

[2] Balk, Alexander M.; Zakharov, Vladimir E. Stability of weak-turbulence Kolmogorov spectra, Nonlinear waves and weak turbulence (Translations. Series 2), Volume 182, American Mathematical Society, 1998, pp. 31-81 | MR | Zbl

[3] Banasiak, Jacek; Arlotti, Luisa Perturbations of positive semigroups with applications, Springer Monographs in Mathematics, Springer, 2006, xiv+438 pages | Zbl

[4] Bernard, Étienne; Gabriel, Pierre Asymptotic behavior of the growth-fragmentation equation with bounded fragmentation rate, J. Funct. Anal., Volume 272 (2017) no. 8, pp. 3455-3485 | DOI | MR | Zbl

[5] Bertoin, Jean Compensated fragmentation processes and limits of dilated fragmentations, Ann. Probab., Volume 44 (2016) no. 2, pp. 1254-1284 | DOI | MR | Zbl

[6] Bertoin, Jean; Budd, Timothy; Curien, Nicolas; Kortchemski, Igor Martingales in self-similar growth-fragmentations and their connections with random planar maps, Probab. Theory Relat. Fields, Volume 172 (2018) no. 3-4, pp. 663-724 | DOI | MR | Zbl

[7] Bertoin, Jean; Stephenson, Robin Local explosion in self-similar growth-fragmentation processes, Electron. Commun. Probab., Volume 21 (2016), pp. 21-66 | MR | Zbl

[8] Bertoin, Jean; Watson, Alexander R. Probabilistic aspects of critical growth-fragmentation equations, Adv. Appl. Probab., Volume 48 (2016) no. A, pp. 37-61 | DOI | MR | Zbl

[9] Carleman, Torsten Sur la Résolution de Certaines Equations Intégrales, Ark. Mat. Astron. Fys., Volume 16 (1922), pp. 1-19 | Zbl

[10] Doumic, Marie Analysis of a population model structured by the cells molecular content, Math. Model. Nat. Phenom., Volume 2 (2007) no. 3, pp. 121-152 | DOI | MR | Zbl

[11] Doumic, Marie; Escobedo, Miguel Time asymptotics for a critical case in fragmentation and growth-fragmentation equations, Kinet. Relat. Models, Volume 9 (2016) no. 2, pp. 251-297 | MR | Zbl

[12] Doumic, Marie; Gabriel, Pierre Eigenelements of a general aggregation-fragmentation model, Math. Models Methods Appl. Sci., Volume 20 (2010) no. 5, pp. 757-783 | DOI | MR | Zbl

[13] Doumic, Marie; Van Brunt, Bruce Explicit Solutions and fine Asymptotics for a critical growth-fragmentation equation (2017) (https://arxiv.org/abs/1704.06087) | Zbl

[14] Escobedo, Miguel A short remark on a growth-fragmentation equation, C. R. Math. Acad. Sci. Paris, Volume 355 (2017) no. 3, pp. 290-295 | DOI | MR | Zbl

[15] Escobedo, Miguel; Mischler, Stéphane; Rodriguez Ricard, M. On self-similarity and stationary problem for fragmentation and coagulation models, Ann. Inst. Henri Poincaré, Anal. Non Linéaire, Volume 22 (2005) no. 1, pp. 99-125 | DOI | Numdam | MR | Zbl

[16] Escobedo, Miguel; Velázquez, Juan J. L. On the fundamental solution of a linearized homogeneous coagulation equation, Commun. Math. Phys., Volume 297 (2010) no. 3, pp. 759-816 | DOI | MR | Zbl

[17] Kveselava, David A. The solution of a boundary problem of the theory of function, C. R. (Dokl.) Acad. Sci. URSS, n. Ser., Volume 53 (1946), pp. 679-682 | MR | Zbl

[18] Le Gall, Jean-François Random geometry on the sphere, Proceedings of the International Congress of Mathematicians—Seoul 2014. Vol. 1, Kyung Moon Sa (2014), pp. 421-442 | Zbl

[19] Michel, Philippe Existence of a solution to the cell division eigenproblem, Math. Models Methods Appl. Sci., Volume 16 (2006) no. 7, suppl., pp. 1125-1153 | DOI | MR | Zbl

[20] Michel, Philippe; Mischler, Stéphane; Perthame, Benoît General relative entropy inequality: an illustration on growth models, J. Math. Pures Appl., Volume 84 (2005) no. 9, pp. 1235-1260 | DOI | MR | Zbl

[21] Miermont, Grégory Aspects of random maps Saint-Flour lecture notes (Preliminary version)

[22] Misra, Om P.; Lavoine, J. L. Transform analysis of generalized functions, North-Holland Mathematics Studies, 119, North-Holland, 1986, xiv+332 pages | MR | Zbl

[23] NIST handbook of mathematical functions (Olver, Frank W. J.; Lozier, Daniel W.; Boisvert, Ronald F.; Clark, Charles W., eds.), U.S. Department of Commerce; Cambridge University Press, 2010, xvi+951 pages | Zbl

[24] Paley, Raymond E. A. C.; Wiener, Norbert Fourier transforms in the complex domain, Colloquium Publications, 19, American Mathematical Society, 1987, x+184 pages (reprint of the 1934 original) | MR

[25] Perthame, Benoît Transport equations in biology, Frontiers in Mathematics, Birkhäuser, 2007, x+198 pages | Zbl

[26] Ziff, Robert M.; McGrady, Ed D. The kinetics of cluster fragmentation and depolymerisation, J. Phys. A, Math. Gen., Volume 18 (1985) no. 15, pp. 3027-3037 | DOI | MR

[27] Ziff, Robert M.; McGrady, Ed D. Kinetics of Polymer Degradation, Macromolecules, Volume 19 (1986), pp. 2513-2519 | DOI

Cited by Sources: