Lower bounds for the Dyadic Hilbert transform
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 27 (2018) no. 1, pp. 265-284.

Dans cet article, nous établissons des bornes pour la transformée de Hilbert dyadique (Haar shift) de la forme Шf L 2 (K) C(I,K)f L 2 (I) I et K sont des intervalles dyadiques et f est à support dans I. Si IK de telles bornes existent sans condition supplémentaire sur f alors que dans les cas KI et KI= une telle borne n’existe que si on impose une condition sur la dérivée de f. Dans le dernier cas nous établissons une borne de la forme Шf L 2 (K) C(I,K)|f I |f I est la moyenne de f sur I. Ce travail permet ainsi une meilleure compréhension du problème similaire pour la transformée de Hilbert sur .

In this paper, we seek lower bounds of the dyadic Hilbert transform (Haar shift) of the form Шf L 2 (K) C(I,K)f L 2 (I) where I and K are two dyadic intervals and f supported in I. If IK, such bounds exist while in the other cases KI and KI= such bounds are only available under additional constraints on the derivative of f. In the later case, we establish a bound of the form Шf L 2 (K) C(I,K)|f I | where f I is the mean of f over I. This sheds new light on the similar problem for the usual Hilbert transform.

Reçu le :
Accepté le :
Publié le :
DOI : 10.5802/afst.1569
Classification : 42B20
Mots clés : Dyadic Hilbert transform, Haar Shift, BMO
Jaming, Philippe 1 ; Pozzi, Elodie 1 ; Wick, Brett D. 2

1 Univ. Bordeaux, IMB, CNRS UMR 5251, 33400 Talence, France
2 Department of Mathematics, Washington University – St. Louis, One Brookings Drive, St. Louis, MO 63130-4899, USA
@article{AFST_2018_6_27_1_265_0,
     author = {Jaming, Philippe and Pozzi, Elodie and Wick, Brett D.},
     title = {Lower bounds for the {Dyadic} {Hilbert} transform},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {265--284},
     publisher = {Universit\'e Paul Sabatier, Toulouse},
     volume = {Ser. 6, 27},
     number = {1},
     year = {2018},
     doi = {10.5802/afst.1569},
     mrnumber = {3771544},
     zbl = {1400.42013},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/afst.1569/}
}
TY  - JOUR
AU  - Jaming, Philippe
AU  - Pozzi, Elodie
AU  - Wick, Brett D.
TI  - Lower bounds for the Dyadic Hilbert transform
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2018
SP  - 265
EP  - 284
VL  - 27
IS  - 1
PB  - Université Paul Sabatier, Toulouse
UR  - http://www.numdam.org/articles/10.5802/afst.1569/
DO  - 10.5802/afst.1569
LA  - en
ID  - AFST_2018_6_27_1_265_0
ER  - 
%0 Journal Article
%A Jaming, Philippe
%A Pozzi, Elodie
%A Wick, Brett D.
%T Lower bounds for the Dyadic Hilbert transform
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2018
%P 265-284
%V 27
%N 1
%I Université Paul Sabatier, Toulouse
%U http://www.numdam.org/articles/10.5802/afst.1569/
%R 10.5802/afst.1569
%G en
%F AFST_2018_6_27_1_265_0
Jaming, Philippe; Pozzi, Elodie; Wick, Brett D. Lower bounds for the Dyadic Hilbert transform. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 27 (2018) no. 1, pp. 265-284. doi : 10.5802/afst.1569. http://www.numdam.org/articles/10.5802/afst.1569/

[1] Al-Aifari, Reema; Defrise, Michel; Katsevich, Alexander Asymptotic analysis of the SVD of the truncated Hilbert transform with overlap, SIAM J. Math. Anal., Volume 47 (2015) no. 1, pp. 797-824 | DOI | MR

[2] Al-Aifari, Reema; Katsevich, Alexander Spectral analysis of the truncated Hilbert transform with overlap, SIAM J. Math. Anal., Volume 46 (2014) no. 1, pp. 192-213 | DOI | MR | Zbl

[3] Al-Aifari, Reema; Pierce, Lillian B.; Steinerberger, Stefan Lower bounds for the truncated Hilbert transform, Rev. Mat. Iberoam., Volume 32 (2016) no. 1, pp. 23-56 | DOI | MR | Zbl

[4] Attouch, Hedy; Buttazzo, Giuseppe; Michaille, Gérard Variational analysis in Sobolev and BV spaces: applications to PDEs and optimization, Series on Optimization, 6, SIAM, 2006, xii+634 pages | Zbl

[5] Courdurier, Matias; Noo, Frédéric; Defrise, Michel; Kudo, Hiroyuki Solving the interior problem of computed tomography using a priori knowledge, Inverse Probl., Volume 24 (2008) no. 6 (Article ID 065001, 27 p.) | DOI | MR | Zbl

[6] Dacorogna, Bernard Direct Methods in the Calculus of Variations, Applied Mathematical Sciences, 78, Springer, 2008, xii+619 pages | MR | Zbl

[7] Defrise, Michel; Noo, Frédéric; Clackdoyle, Rolf; Kudo, Hiroyuki Truncated Hilbert transform and image reconstruction from limited tomographic data, Inverse Probl., Volume 22 (2006) no. 3, pp. 1037-1053 | DOI | MR | Zbl

[8] Hytönen, Tuomas On Petermichl’s dyadic shift and the Hilbert transform, C. R. Math., Acad. Sci. Paris, Volume 346 (2008) no. 21–22, pp. 1133-1136 | DOI | MR | Zbl

[9] Hytönen, Tuomas The sharp weighted bound for general Calderón-Zygmund operators, Ann. Math., Volume 175 (2012) no. 3, pp. 1473-1506 | DOI | Zbl

[10] Katsevich, Alexander Singular value decomposition for the truncated Hilbert transform, Inverse Probl., Volume 26 (201) no. 11 (Article ID 115011, 12 p.) | MR | Zbl

[11] Katsevich, Alexander Singular value decomposition for the truncated Hilbert transform. II., Inverse Probl., Volume 27 (2011) no. 7 (Article ID 075006, 7 p.) | DOI | MR | Zbl

[12] Katsevich, E.; Katsevich, Alexander; Wang, Ge Stability of the interior problem with polynomial attenuation in the region of interest, Inverse Probl., Volume 28 (2012) no. 6 (Article ID 065022, 28 p.) | DOI | MR | Zbl

[13] Kudo, Hiroyuki; Courdurier, Matias; Noo, Frédéric; Defrise, Michel Tiny a priori knowledge solves the interior problem in computed tomography, Phys. Med. Biol., Volume 53 (2008) no. 9, pp. 2207-2231 | DOI

[14] Natterer, Frank The mathematics of computerized tomography, Classics in Applied Mathematics, 32, SIAM, 2007, xvii+222 pages

[15] Nazarov, Fedor; Reznikov, Alexander; Vasyunin, Vasily; Volberg, Alexander A Bellman function counterexample to the A 1 conjecture: the blow-up of the weak norm estimates of weighted singular operators (2015) (https://arxiv.org/abs/1506.04710)

[16] Nazarov, Fedor; Volberg, Alexander The Bellman function, the two-weight Hilbert transform, and embeddings of the model spaces K θ , J. Anal. Math., Volume 87 (2002), pp. 385-414 | DOI | MR | Zbl

[17] Petermichl, Stefanie Dyadic shifts and a logarithmic estimate for Hankel operators with matrix symbol, C. R. Math., Acad. Sci. Paris, Volume 330 (2000) no. 6, pp. 455-460 | DOI | MR | Zbl

[18] Petermichl, Stefanie The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical A p characteristic, Am. J. Math., Volume 129 (2007) no. 5, pp. 1355-1375 | DOI | MR | Zbl

[19] Slepian, David Some comments on Fourier analysis, uncertainty and modeling, SIAM Rev., Volume 25 (1983), pp. 379-393 | DOI | MR | Zbl

[20] Tricomi, Francesco G. Integral Equations, Dover Books on Mathematics, Dover publications, 1985, iv+254 pages

[21] Ye, Yangbo; Yu, Hengyong; Wang, Ge Exact interior reconstruction with cone-beam CT, International Journal of Biomedical Imaging, Volume 2007 (2007) (Article ID 10693, 5 p.) | DOI

Cité par Sources :