Let be a finitely generated group of polynomial volume growth equipped with a word-length . The goal of this paper is to develop techniques to study the behavior of random walks driven by symmetric measures such that, for any , . In particular, we provide a sharp lower bound for the return probability in the case when has a finite weak-logarithmic moment.
Soit un groupe finiment engendré, à croissance polynomiale du volume et muni de la distance des mots associée à un ensemble donné de générateurs. Le but de ce travail est de développer des techniques qui permettent l’étude de marches aléatoires associées à des mesures de probabilité symetriques, , telles que, pout tout , . En particulier, nous donnons une borne inférieure optimale pour la probabilité de retour dans le cas où a un moment logarithmique de type faible fini.
@article{AFST_2015_6_24_4_837_0, author = {Saloff-Coste, Laurent and Zheng, Tianyi}, title = {Random walks under slowly varying moment conditions on groups of polynomial volume growth}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {837--855}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 24}, number = {4}, year = {2015}, doi = {10.5802/afst.1467}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1467/} }
TY - JOUR AU - Saloff-Coste, Laurent AU - Zheng, Tianyi TI - Random walks under slowly varying moment conditions on groups of polynomial volume growth JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2015 SP - 837 EP - 855 VL - 24 IS - 4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1467/ DO - 10.5802/afst.1467 LA - en ID - AFST_2015_6_24_4_837_0 ER -
%0 Journal Article %A Saloff-Coste, Laurent %A Zheng, Tianyi %T Random walks under slowly varying moment conditions on groups of polynomial volume growth %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2015 %P 837-855 %V 24 %N 4 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1467/ %R 10.5802/afst.1467 %G en %F AFST_2015_6_24_4_837_0
Saloff-Coste, Laurent; Zheng, Tianyi. Random walks under slowly varying moment conditions on groups of polynomial volume growth. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Numéro Spécial : Conférence “Talking Across Fields” du 24 au 28 mars 2014 à l’Institut de Mathématiques de Toulouse, Volume 24 (2015) no. 4, pp. 837-855. doi : 10.5802/afst.1467. http://www.numdam.org/articles/10.5802/afst.1467/
[1] Bendikov (A.) and Saloff-Coste (L.).— Random walks on groups and discrete subordination, Math. Nachr. 285, no. 5-6, p. 580-605 (2012). | MR | Zbl
[2] Bendikov (A.) and Saloff-Coste (L.).— Random walks driven by low moment measures, Ann. Probab. 40, no. 6, p. 2539-2588 (2012). | MR | Zbl
[3] Bingham (N. H.), Goldie (C. M.), and Teugels (J. L.).— Regular variation, Encyclopedia of Mathematics and its Applications, vol. 27, Cambridge University Press, Cambridge (1987). | MR | Zbl
[4] de la Harpe (P.).— Topics in geometric group theory, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL (2000). | MR | Zbl
[5] Griffin (P. S.), Jain (N. C.), and Pruitt (W. E.).— Approximate local limit theorems for laws outside domains of attraction, Ann. Probab. 12, no. 1, p. 45-63 (1984). | MR | Zbl
[6] Gromov (M.).— Groups of polynomial growth and expanding maps, Inst. Hautes Études Sci. Publ. Math., no. 53, p. 53-73 (1981). | Numdam | MR | Zbl
[7] Hebisch (W.) and Saloff-Coste (L.).— Gaussian estimates for Markov chains and random walks on groups, Ann. Probab. 21, no. 2, p. 673-709 (1993). | MR | Zbl
[8] Jacob (N.).— Pseudo differential operators and Markov processes. Vol. I, Imperial College Press, London, 2001, Fourier analysis and semigroups. | MR | Zbl
[9] Pittet (Ch.) and Saloff-Coste (L.).— On the stability of the behavior of random walks on groups, J. Geom. Anal. 10, no. 4, p. 713-737 (2000). | MR | Zbl
[10] Saloff-Coste (L.) and Zheng (T.).— On some random walks driven by spread-out measures, Available on Arxiv arXiv:1309.6296 [math.PR], submitted (2012).
[11] Saloff-Coste (L.) and Zheng (T.).— Random walks and isoperimetric profiles under moment conditions, Available on Arxiv arXiv:1501.05929 [math.PR], submitted (2014).
[12] Saloff-Coste (L.) and Zheng (T.).— Random walks on nilpotent groups driven by measures supported on powers of generators, To appear in Groups, Geometry, and Dynamics (2013). | MR
[13] Schilling (R. L.), Song (R.), and Vondraček (Z.).— Bernstein functions, second ed., de Gruyter Studies in Mathematics, vol. 37, Walter de Gruyter & Co., Berlin, (2012), Theory and applications. | MR | Zbl
Cited by Sources: