A note on exit time for anchored isoperimetry
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 4, pp. 817-835.

Soit (X n ) n0 une marche aléatoire réversible sur un graphe G vérifiant une inégalité isopérimétrique ancrée. Nous obtenons une majoration du temps de sortie de tout ensemble connexe contenant un point ancre (et du temps de passage dans le cas transient) de la marche X.

Let (X n ) n0 be a reversible random walk on a graph G satisfying an anchored isoperimetric inequality. We give upper bounds for exit time (and occupation time in transient case) by X of any set which contains the root. This article covers many results of [11].

DOI : 10.5802/afst.1466
Delmotte, Thierry 1 ; Rau, Clément 1

1 Université Paul Sabatier, Institut de Mathématiques de Toulouse, route de Narbonne, 31400 Toulouse
@article{AFST_2015_6_24_4_817_0,
     author = {Delmotte, Thierry and Rau, Cl\'ement},
     title = {A note on exit time for anchored isoperimetry},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {817--835},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {Ser. 6, 24},
     number = {4},
     year = {2015},
     doi = {10.5802/afst.1466},
     mrnumber = {3434258},
     zbl = {1333.60087},
     language = {en},
     url = {http://www.numdam.org/articles/10.5802/afst.1466/}
}
TY  - JOUR
AU  - Delmotte, Thierry
AU  - Rau, Clément
TI  - A note on exit time for anchored isoperimetry
JO  - Annales de la Faculté des sciences de Toulouse : Mathématiques
PY  - 2015
SP  - 817
EP  - 835
VL  - 24
IS  - 4
PB  - Université Paul Sabatier, Institut de mathématiques
PP  - Toulouse
UR  - http://www.numdam.org/articles/10.5802/afst.1466/
DO  - 10.5802/afst.1466
LA  - en
ID  - AFST_2015_6_24_4_817_0
ER  - 
%0 Journal Article
%A Delmotte, Thierry
%A Rau, Clément
%T A note on exit time for anchored isoperimetry
%J Annales de la Faculté des sciences de Toulouse : Mathématiques
%D 2015
%P 817-835
%V 24
%N 4
%I Université Paul Sabatier, Institut de mathématiques
%C Toulouse
%U http://www.numdam.org/articles/10.5802/afst.1466/
%R 10.5802/afst.1466
%G en
%F AFST_2015_6_24_4_817_0
Delmotte, Thierry; Rau, Clément. A note on exit time for anchored isoperimetry. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 24 (2015) no. 4, pp. 817-835. doi : 10.5802/afst.1466. http://www.numdam.org/articles/10.5802/afst.1466/

[1] Alexander (S.) and Orbach (R.).— Density of states on fractals: “fractons". J. Physique (Paris) Lett., 43, p. 625-631 (1982).

[2] Antal (P.) and Pisztora (A.).— On the chemical distance for supercritical Bernoulli percolation. Ann. Probab., 24(2), p. 1036-1048 (1996). | MR | Zbl

[3] Barlow (M. T.).— Random walks on supercritical percolation clusters. Ann. Probab., 32(4), p. 3024-3084 (2004). | MR | Zbl

[4] Benjamini (I.), Lyons (R.), and Schramm (O.).— Percolation perturbations in potential theory and random walks. In Random walks and discrete potential theory (Cortona, 1997), Sympos. Math., XXXIX, pages 56-84. Cambridge Univ. Press, Cambridge (1999). | MR | Zbl

[5] Berger (N.), Biskup (M.),Hoffman (C.), and Kozma (G.).— Anomalous heat-kernel decay for random walk among bounded random conductances (2007). | Numdam | MR | Zbl

[6] Boukhadra (O.).— Anomalous heat-kernel decay for random walk among polynomial lower tail random conductances (2008).

[7] Chen (D.) and Peres (Y.).— Anchored expansion, percolation and speed. Ann. Probab., 32(4), p. 2978-2995, 2004. With an appendix by Gábor Pete. | MR | Zbl

[8] Coulhon (T.).— Ultracontractivity and Nash type inequalities. J. Funct. Anal., 141(2), p. 510-539 (1996). | MR | Zbl

[9] Coulhon (T.) and Saloff-Coste (L.).— Puissances d’un opérateur régularisant. Ann. Inst. H. Poincaré Probab. Statist., 26(3), p. 419-436 (1990). | Numdam | MR | Zbl

[10] de Gennes (P.-G.).— La percolation : un concept unificateur. La Recherche, 7, p. 919-927 (1976).

[11] Delmotte (T.) and Rau (C.).— Exit time for anchored expansion. http, p. //arxiv.org/abs/0903.3892, (2008).

[12] Gabor (P.).— A note on percolation on d , isoperimetric profile via exponential cluster repulsion (2008). | MR

[13] Grigor’yan (A.).— On the existence of positive fundamental solution of the laplace equation on riemannian manifolds. Mat. Sb. (N.S.), 56(2), p. 349-358 (1987). | Zbl

[14] Grigor’yan (A.).— Heat kernel upper bounds on a complete non-compact manifold. Rev. Mat. Iberoamericana, 10(2), p. 395-452 (1994). | Zbl

[15] Grimmett (G.R.).— Percolation (1989). | MR

[16] Hofstad (R.V.D.).— The incipient infinite cluster for high-dimensional unoriented percolation. Journal of Statistical Physics (2011).

[17] Lyons (R.), Morris (B.), and Schramm (O.).— Ends in uniform spanning forests. Electron. J. Probab., 13, p. no. 58, 1702-1725 (2008). | MR | Zbl

[18] Mathieu (P.) and Remy (E.).— Isoperimetry and heat kernel decay on percolation clusters. Ann. Probab., 32(1A), p. 100-128 (2004). | MR | Zbl

[19] Morris (B.) and Peres (Y.).— Evolving sets and mixing. In Proceedings of the Thirty-Fifth Annual ACM Symposium on Theory of Computing, pages 279-286 (electronic), New York (2003). ACM. | MR | Zbl

[20] Nash (J.).— Continuity of solutions of parabolic and elliptic equations. Amer. J. Math., 80, p. 931-954 (1958). | MR | Zbl

[21] Pittet (C.) and Saloff-Coste (L.).— A survey on the relationships between volume growth, isoperimetry , and the behaviour of simple random walk on cayley graphs, with examples. Preprint (2001).

[22] Rau (C.).— Sur le nombre de points visités par une marche aléatoire sur un amas infini de percolation. Bull. Soc. Math. France, 135(1), p. 135-169 (2007). | Numdam | MR | Zbl

[23] Schramm (O.) and Xu (Z.).— Hyperbolic and parabolic packings. Discrete Comput. Geom., 14(2), p. 123-149 (1995). | MR | Zbl

[24] Sinai (Y.G.).— Theory of phase transition: Rigourous results. Int Series in Natural Phil., 108.

[25] Thomassen (C.).— Isoperimetric inequalities and transient random walks on graphs. Ann. Probab., 20(3), p. 1592-1600 (1992). | MR | Zbl

[26] Varopoulos (N. Th.).— Hardy-Littlewood theory for semigroups. J. Funct. Anal., 63(2), p. 240-260 (1985). | MR | Zbl

[27] Virág (B.).— Anchored expansion and random walk. Geom. Funct. Anal., 10(6), p. 1588-1605 (2000). | MR | Zbl

Cité par Sources :