In this paper we explicitly determine the Macdonald formula for spherical functions on any locally finite, regular and affine Bruhat-Tits building, by constructing the finite difference equations that must be satisfied and explaining how they arise, by only using the geometric properties of the building.
On détermine explicitement la formule de Macdonald pour les fonctions sphériques sur tout immeuble de Bruhat-Tits localement fini, régulier et affine en construisant d’une manière motivée les équations aux différences finies qu’elles doivent satisfaire, n’utilisant que les propriétés géométriques de l’immeuble.
@article{AFST_2011_6_20_4_669_0, author = {Mantero, A. M. and Zappa, A.}, title = {Macdonald formula for spherical functions on affine buildings}, journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques}, pages = {669--758}, publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques}, address = {Toulouse}, volume = {Ser. 6, 20}, number = {4}, year = {2011}, doi = {10.5802/afst.1321}, zbl = {1247.43012}, mrnumber = {2918211}, language = {en}, url = {http://www.numdam.org/articles/10.5802/afst.1321/} }
TY - JOUR AU - Mantero, A. M. AU - Zappa, A. TI - Macdonald formula for spherical functions on affine buildings JO - Annales de la Faculté des sciences de Toulouse : Mathématiques PY - 2011 SP - 669 EP - 758 VL - 20 IS - 4 PB - Université Paul Sabatier, Institut de mathématiques PP - Toulouse UR - http://www.numdam.org/articles/10.5802/afst.1321/ DO - 10.5802/afst.1321 LA - en ID - AFST_2011_6_20_4_669_0 ER -
%0 Journal Article %A Mantero, A. M. %A Zappa, A. %T Macdonald formula for spherical functions on affine buildings %J Annales de la Faculté des sciences de Toulouse : Mathématiques %D 2011 %P 669-758 %V 20 %N 4 %I Université Paul Sabatier, Institut de mathématiques %C Toulouse %U http://www.numdam.org/articles/10.5802/afst.1321/ %R 10.5802/afst.1321 %G en %F AFST_2011_6_20_4_669_0
Mantero, A. M.; Zappa, A. Macdonald formula for spherical functions on affine buildings. Annales de la Faculté des sciences de Toulouse : Mathématiques, Serie 6, Volume 20 (2011) no. 4, pp. 669-758. doi : 10.5802/afst.1321. http://www.numdam.org/articles/10.5802/afst.1321/
[1] Cartwright (D.I.) and Mlotkowski (W.).— Harmonic Analysis for Groups Acting on Triangle Buildings, J. Austral. Math. Soc. (Series A), 56 n. 3: p. 345-383 (1994). | MR | Zbl
[2] Cartwright (D.I.).— Spherical Harmonic Analysis on Buildings of Type , Monatsh. Math., 133 n. 2: p. 93-109 (2001). | MR | Zbl
[3] Humphreys (J. E.).— Introduction to Lie Algebras and Representation Theory, Graduate Texts in Mathematics, 9, Springer-Verlag, New York-Berlin (1978). | MR | Zbl
[4] Humphreys (J. E.).— Reflection Groups and Coxeter Groups, Cambridge Studies in Advanced Mathematics, 29, C.U.P. Cambridge (1990). | MR | Zbl
[5] Macdonald (I. G.).— Spherical Functions on a Group of p-adic type, Publications of the Ramanujan Institute. Ramanujan Institute n. 2, Centre for Advanced Studies in Mathematics, University of Madras, Madras (1971). | MR | Zbl
[6] Macdonald (I. G.).— Affine Hecke Algebras and Orthogonal Polynomials, Cambridge Tracts in Mathematics, 157, C.U.P. Cambridge (2003). | MR | Zbl
[7] Mantero (A. M.) and Zappa (A.).— Spherical Functions and Spectrum of the Laplace Operators on Buidings of rank 2, Boll. Un. Mat. Ital. B (7), 8: p. 419-475 (1994). | MR | Zbl
[8] Mantero (A. M.) and Zappa (A.).— Eigenvalues of the vertex set Hecke algebra of an affine building, preprint.
[9] Opdam (E. M.).— On the spectral decomposition of affine Hecke algebras, J. Inst. Math. Jussieu 3 n. 4: p. 531-648 (2007). | MR | Zbl
[10] Parkinson (J.).— Buildings and Hecke Algebras, J. Algebra 297 n. 1, p. 1-49 (2006). | MR | Zbl
[11] Parkinson (J.).— Spherical Harmonic analysis on Affine Buildings, Math. Z. 253 n. 3, p. 571-606 (2006). | MR | Zbl
[12] Ram (A.).— Alcove walks, Hecke algebras, spherical functions, crystal and column strict tableaux, Pure Appl. Math. Q. 2, n. 4, part 2: p. 963-1013 (2006). | MR | Zbl
Cited by Sources: