Solutions globales des équations d’Einstein-Maxwell
Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 18 (2009) no. 3, pp. 495-540.

En adaptant une méthode de Lindblad et Rodnianski, on prouve l’existence de solutions globales pour les équations d’Einstein-Maxwell en dimension d’espace n3. Les données initiales considérées sont lisses, asymptotiquement euclidiennes et suffisamment petites. On utilise la jauge harmonique et la jauge de Lorenz.

Adapting a method of Lindblad and Rodnianski, we prove existence of global solutions for the Einstein-Maxwell equations in space dimension n3. We consider small enough smooth and asymptotically flat initial data. We use harmonic gauge and Lorenz gauge.

@article{AFST_2009_6_18_3_495_0,
     author = {Loizelet, Julien},
     title = {Solutions globales des \'equations d{\textquoteright}Einstein-Maxwell},
     journal = {Annales de la Facult\'e des sciences de Toulouse : Math\'ematiques},
     pages = {495--540},
     publisher = {Universit\'e Paul Sabatier, Institut de math\'ematiques},
     address = {Toulouse},
     volume = {6e s{\'e}rie, 18},
     number = {3},
     year = {2009},
     doi = {10.5802/afst.1212},
     mrnumber = {2582443},
     zbl = {1200.35303},
     language = {fr},
     url = {http://www.numdam.org/articles/10.5802/afst.1212/}
}
Loizelet, Julien. Solutions globales des équations d’Einstein-Maxwell. Annales de la Faculté des sciences de Toulouse : Mathématiques, Série 6, Tome 18 (2009) no. 3, pp. 495-540. doi : 10.5802/afst.1212. http://www.numdam.org/articles/10.5802/afst.1212/

[1] Bizoń (P.), Chmaj (T.), and Schmidt (B.G.).— Critical behavior in vacuum gravitational collapse in 4+1 dimensions, Phys. Rev. Lett. 95, 071102, gr-qc/0506074 (2005). | MR 2167019

[2] Choquet-Bruhat (Y.).— Théorème d’existence pour certains systèmes d’équations aux dérivées partielles non linéaires. Acta Math. 88, p. 144-225 (1952). | Zbl 0049.19201

[3] Christodoulou (D.).— Global solutions of nonlinear hyperbolic equations for small initial data, Commun. Pure Appl. Math. 39, p. 267-282 (1986). MR MR820070 (87c :35111) | MR 820070 | Zbl 0612.35090

[4] Christodoulou (D.) and Klainerman (S.).— The global nonlinear stability of the Minkowski space, Princeton UP, (1993). | MR 1316662 | Zbl 0827.53055

[5] Emparan (R.) and Reall (H.S.).— Black rings, hep-th/0608012, (2006). | MR 2270099 | Zbl 1108.83001

[6] Hollands (S.) and Ishibashi (A.).— Asymptotic flatness and Bondi energy in higher dimensional gravity, Jour. Math. Phys. 46, 022503, 31, gr-qc/0304054 (2005). MR MR2121709 (2005m :83039) | MR 2121709 | Zbl 1076.83010

[7] Hollands (S.) and Wald (R.M.).— Conformal null infinity does not exist for radiating solutions in odd spacetime dimensions, Class. Quantum Grav. 21, p. 5139-5145, gr-qc/0407014, (2004). MR MR2103245 (2005k :83039) | MR 2103245 | Zbl 1081.83030

[8] Hörmander (L.).— Lectures on Nonlinear Hyperbolic Differential Equations,Springer, (1986). | MR 1466700 | Zbl 0881.35001

[9] Hörmander (L.).— On the fully nonlinear Cauchy problem with small data. II, Microlocal analysis and nonlinear waves (Minneapolis, MN, 1988-1989), IMA Vol. Math. Appl., vol. 30, Springer, New York, 1991, pp. 51-81. MR MR1120284 (94c :35127) | MR 1120284 | Zbl 0783.35036

[10] Klainerman (S.).— Global Existence for Nonlinear Wave Equations. Communications on Pure and Applied Mathematics, Vol. XXXIII, p. 43-100 (1980). | MR 544044 | Zbl 0405.35056

[11] Klainerman (S.).— Uniform Decay Estimates and the Lorentz Invariance of the Classical wave Equation.Communications on Pure and Applied Mathematics, Vol. XXXVIII, p. 321-332 (1985). | MR 784477 | Zbl 0635.35059

[12] Klainerman (S.).— The null condition and global existence to nonlinear wave equations. Lectures in Applied Mathematics 23, p. 293-326 (1986). | MR 837683 | Zbl 0599.35105

[13] Lindblad (H.) and Rodnianski (I.).— Global existence for the Einstein vacuum equations in wave coordinates. Commun. Math. Phys. 256, p. 43-110 (2005). | MR 2134337 | Zbl 1081.83003

[14] Lindblad (H.) and Rodnianski (I.).— The global stability of Minkowski space-time in harmonic gauge. ArXiv :math.AP/0411109.

[15] Ta-Tsien Li and Yun Mei Chen.— Global classical solutions for nonlinear evolution equations, Pitman Monographs and Surveys in Pure and Applied Mathematics, vol. 45, Longman Scientific & Technical, Harlow (1992). MR MR1172318 (93g :35002) | MR 1172318 | Zbl 0787.35002