Continuation of unitary derived functor modules out of the canonical chamber
Analyse harmonique sur les groupes de Lie et les espaces symétriques (Actes du colloque du Kleebach, 20-24 mai 1983), Mémoires de la Société Mathématique de France, Série 2, no. 15 (1984), pp. 139-156.
@incollection{MSMF_1984_2_15__139_0,
     author = {Enright, Thomas J. and Wolf, Joseph A.},
     title = {Continuation of unitary derived functor modules out of the canonical chamber},
     booktitle = {Analyse harmonique sur les groupes de Lie et les espaces sym\'etriques (Actes du colloque du Kleebach, 20-24 mai 1983)},
     editor = {Duflo, Michel and Eymard, Pierre and Schiffmann, G\'erard},
     series = {M\'emoires de la Soci\'et\'e Math\'ematique de France},
     pages = {139--156},
     publisher = {Soci\'et\'e math\'ematique de France},
     number = {15},
     year = {1984},
     doi = {10.24033/msmf.302},
     zbl = {0582.22013},
     mrnumber = {86k:22036},
     url = {http://www.numdam.org/articles/10.24033/msmf.302/}
}
TY  - CHAP
AU  - Enright, Thomas J.
AU  - Wolf, Joseph A.
TI  - Continuation of unitary derived functor modules out of the canonical chamber
BT  - Analyse harmonique sur les groupes de Lie et les espaces symétriques (Actes du colloque du Kleebach, 20-24 mai 1983)
ED  - Duflo, Michel
ED  - Eymard, Pierre
ED  - Schiffmann, Gérard
T3  - Mémoires de la Société Mathématique de France
PY  - 1984
DA  - 1984///
SP  - 139
EP  - 156
IS  - 15
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/msmf.302/
UR  - https://zbmath.org/?q=an%3A0582.22013
UR  - https://www.ams.org/mathscinet-getitem?mr=86k:22036
UR  - https://doi.org/10.24033/msmf.302
DO  - 10.24033/msmf.302
ID  - MSMF_1984_2_15__139_0
ER  - 
Enright, Thomas J.; Wolf, Joseph A. Continuation of unitary derived functor modules out of the canonical chamber, dans Analyse harmonique sur les groupes de Lie et les espaces symétriques (Actes du colloque du Kleebach, 20-24 mai 1983), Mémoires de la Société Mathématique de France, Série 2, no. 15 (1984), pp. 139-156. doi : 10.24033/msmf.302. http://www.numdam.org/articles/10.24033/msmf.302/

[1] A. Borel and J. De Siebenthal, “Les sous-groupes fermés de rang maximum des groupes de Lie clos,” Comment. Math. Helv. 23 (1949), 200-221. | MR 11,326d | Zbl 0034.30701

[2] T.J. Enright, “Unitary representations for two real forms of a semisimple Lie algebra : a theory of comparison,” Proceedings of the College Park Conference, 1982, to appear. | Zbl 0531.22012

[3] T.J. Enright, R. Howe and N.R. Wallach, “A classification of unitary highest weight modules,” Proceedings of the Park City Conference on Representations of Reductive Groups, 1982, to appear. | Zbl 0535.22012

[4] T.J. Enright, R. Parthasarathy, N.R. Wallach and J.A. Wolf, “Classes of unitarizable derived functor modules,” Proc. Nat. Acad. Sci. USA, 1983, to appear. | Zbl 0527.22007

[5] T.J. Enright, R. Parthasarathy, N.R. Wallach and J.A. Wolf, “Unitary derived functor modules with small spectrum,” to appear. | Zbl 0568.22007

[6] J.C. Jantzen, “Kontravariante Formen auf induzierten Darstellungen halbeinfacher Lie-Algebren,” Math. Ann. 226 (1977), 53-65. | MR 55 #12783 | Zbl 0372.17003

[7] N.R. Wallach, “The analytic continuation of the discrete series, I, II,” Trans. Amer. Math. Soc. 251 (1979), 1-17 and 19-37. | MR 81a:22009 | Zbl 0419.22017

Cité par Sources :