A note on intersections of simplices
Bulletin de la Société Mathématique de France, Volume 139 (2011) no. 1, pp. 89-95.

We provide a corrected proof of [1, Théorème 9] stating that any metrizable infinite-dimensional simplex is affinely homeomorphic to the intersection of a decreasing sequence of Bauer simplices.

Nous exposons une démonstration rectifiée de [1, Théorème 9], montrant ainsi que tout simplexe de Choquet métrisable et de dimension infinie se représente comme intersection d'une suite décroissante de simplexes de Bauer.

DOI: 10.24033/bsmf.2601
Classification: 46A55,  52A07
Keywords: simplex, Bauer simplex, intersection, representing matrix
@article{BSMF_2011__139_1_89_0,
     author = {Edwards, David A. and Kalenda, Ond\v{r}ej F. K. and Spurn\'y, Ji\v{r}{\'\i}},
     title = {A note on intersections of simplices},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {89--95},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {139},
     number = {1},
     year = {2011},
     doi = {10.24033/bsmf.2601},
     zbl = {1227.46011},
     mrnumber = {2815029},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/bsmf.2601/}
}
TY  - JOUR
AU  - Edwards, David A.
AU  - Kalenda, Ondřej F. K.
AU  - Spurný, Jiří
TI  - A note on intersections of simplices
JO  - Bulletin de la Société Mathématique de France
PY  - 2011
DA  - 2011///
SP  - 89
EP  - 95
VL  - 139
IS  - 1
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/bsmf.2601/
UR  - https://zbmath.org/?q=an%3A1227.46011
UR  - https://www.ams.org/mathscinet-getitem?mr=2815029
UR  - https://doi.org/10.24033/bsmf.2601
DO  - 10.24033/bsmf.2601
LA  - en
ID  - BSMF_2011__139_1_89_0
ER  - 
%0 Journal Article
%A Edwards, David A.
%A Kalenda, Ondřej F. K.
%A Spurný, Jiří
%T A note on intersections of simplices
%J Bulletin de la Société Mathématique de France
%D 2011
%P 89-95
%V 139
%N 1
%I Société mathématique de France
%U https://doi.org/10.24033/bsmf.2601
%R 10.24033/bsmf.2601
%G en
%F BSMF_2011__139_1_89_0
Edwards, David A.; Kalenda, Ondřej F. K.; Spurný, Jiří. A note on intersections of simplices. Bulletin de la Société Mathématique de France, Volume 139 (2011) no. 1, pp. 89-95. doi : 10.24033/bsmf.2601. http://www.numdam.org/articles/10.24033/bsmf.2601/

[1] D. A. Edwards - « Systèmes projectifs d'ensembles convexes compacts », Bull. Soc. Math. France 103 (1975), p. 225-240. | Numdam | MR | Zbl

[2] V. P. Fonf, J. Lindenstrauss & R. R. Phelps - « Infinite dimensional convexity », in Handbook of the geometry of Banach spaces, Vol. I, North-Holland, 2001, p. 599-670. | MR | Zbl

[3] A. J. Lazar & J. Lindenstrauss - « Banach spaces whose duals are L 1 spaces and their representing matrices », Acta Math. 126 (1971), p. 165-193. | MR | Zbl

[4] J. Lindenstrauss, G. H. Olsen & Y. Sternfeld - « The Poulsen simplex », Ann. Inst. Fourier (Grenoble) 28 (1978), p. 91-114. | Numdam | MR | Zbl

[5] Y. Sternfeld - « Characterization of Bauer simplices and some other classes of Choquet simplices by their representing matrices », in Notes in Banach spaces, Univ. Texas Press, 1980, p. 306-358. | MR | Zbl

Cited by Sources: