Cutting the loss of derivatives for solvability under condition (Ψ)
Bulletin de la Société Mathématique de France, Volume 134 (2006) no. 4, pp. 559-631.

For a principal type pseudodifferential operator, we prove that condition (ψ) implies local solvability with a loss of 3/2 derivatives. We use many elements of Dencker’s paper on the proof of the Nirenberg-Treves conjecture and we provide some improvements of the key energy estimates which allows us to cut the loss of derivatives from ϵ+3/2 for any ϵ>0 (Dencker’s most recent result) to 3/2 (the present paper). It is already known that condition (ψ) does not imply local solvability with a loss of 1 derivative, so we have to content ourselves with a loss >1.

Pour un opérateur de type principal, nous démontrons que la condition (Ψ) implique la résolubilité locale avec perte de 3/2 dérivées. Nous utilisons beaucoup d’éléments de la démonstration par Dencker de la conjecture de Nirenberg-Treves et nous limitons la perte de dérivées à 3/2, améliorant le résultat le plus récent de Dencker (perte de ϵ+3/2 dérivées pour tout ϵ>0). La condition (Ψ) n’impliquant pas la résolubilité locale avec perte d’une dérivée, nous devons nous contenter d’une perte >1.

DOI: 10.24033/bsmf.2522
Classification: 35S05, 47G30
Keywords: solvability, a priori estimates, pseudodifferential operators
Mot clés : résolubilité, estimations a priori, op´erateurs pseudodifférentiels
@article{BSMF_2006__134_4_559_0,
     author = {Lerner, Nicolas},
     title = {Cutting the loss of derivatives for solvability under condition $(\Psi )$},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {559--631},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {134},
     number = {4},
     year = {2006},
     doi = {10.24033/bsmf.2522},
     mrnumber = {2364944},
     zbl = {1181.35355},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/bsmf.2522/}
}
TY  - JOUR
AU  - Lerner, Nicolas
TI  - Cutting the loss of derivatives for solvability under condition $(\Psi )$
JO  - Bulletin de la Société Mathématique de France
PY  - 2006
SP  - 559
EP  - 631
VL  - 134
IS  - 4
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/bsmf.2522/
DO  - 10.24033/bsmf.2522
LA  - en
ID  - BSMF_2006__134_4_559_0
ER  - 
%0 Journal Article
%A Lerner, Nicolas
%T Cutting the loss of derivatives for solvability under condition $(\Psi )$
%J Bulletin de la Société Mathématique de France
%D 2006
%P 559-631
%V 134
%N 4
%I Société mathématique de France
%U http://www.numdam.org/articles/10.24033/bsmf.2522/
%R 10.24033/bsmf.2522
%G en
%F BSMF_2006__134_4_559_0
Lerner, Nicolas. Cutting the loss of derivatives for solvability under condition $(\Psi )$. Bulletin de la Société Mathématique de France, Volume 134 (2006) no. 4, pp. 559-631. doi : 10.24033/bsmf.2522. http://www.numdam.org/articles/10.24033/bsmf.2522/

[1] R. Beals & C. Fefferman - « On local solvability of linear partial differential equations », Ann. of Math. 97 (1973), p. 482-498. | MR | Zbl

[2] J. Bony & J. Chemin - « Espaces fonctionnels associés au calcul de Weyl-Hörmander », Bull Soc. Math. France 122 (1994), p. 77-118. | Numdam | MR | Zbl

[3] J. Bony & N. Lerner - « Quantification asymptotique et microlocalisations d'ordre supérieur », Ann. Sci. Éc. Norm. Sup. 22 (1989), p. 377-433. | Numdam | MR | Zbl

[4] N. Dencker - « Estimates and solvability », Ark. Mat. 37 (1999), p. 221-243. | MR | Zbl

[5] -, « On the sufficiency of condition (ψ) », preprint, May 22 2001.

[6] -, « The solvability of pseudo-differential operators », Phase space analysis of partial differential equations, Pubbl. Cent. Ric. Mat. Ennio Giorgi, vol. 1, Sc. Norm. Sup., Pisa, 2004, p. 175-200. | MR | Zbl

[7] -, « The resolution of the Nirenberg-Treves conjecture », Ann. of Math. 163 (2006), p. 405-444. | MR | Zbl

[8] C. Fefferman & D. Phong - « On positivity of pseudo-differential equations », Proc. Nat. Acad. Sci. 75 (1978), p. 4673-4674. | MR | Zbl

[9] L. Hörmander - « On the theory of general partial differential operators », Acta Math. 94 (1955), p. 161-248. | MR | Zbl

[10] -, « Differential equations without solutions », Math. Ann. 140 (1960), p. 169-173. | EuDML | MR

[11] -, « Pseudo-differential operators and non-elliptic boundary value problems », Ann. of Math. 83 (1966), p. 129-209. | MR | Zbl

[12] -, « Propagation of singularities and semiglobal existence theorems for (pseudo-)differential operators of principal type », Ann. of Math. 108 (1978), p. 569-609. | MR | Zbl

[13] -, « Pseudo-differential operators of principal type », Singularities in boundary value problems, D. Reidel Publ. Co., Dortrecht, Boston, London, 1981.

[14] -, The analysis of linear partial differential operators I-IV, Springer Verlag, 1983-85. | Zbl

[15] -, Notions of convexity, Birkhäuser, 1994. | MR

[16] -, « On the solvability of pseudodifferential equations », Structure of solutions of differential equations (M. Morimoto & T. Kawai, éds.), World Sci. Publishing, River Edge, NJ, 1996, p. 183-213. | MR | Zbl

[17] -, « private communications », september 2002 - august 2004.

[18] N. Lerner - « Sufficiency of condition (ψ) for local solvability in two dimensions », Ann. of Math. 128 (1988), p. 243-258. | MR | Zbl

[19] -, « An iff solvability condition for the oblique derivative problem », Séminaire EDP, École polytechnique, 1990-91, exposé 18.

[20] -, « Nonsolvability in L 2 for a first order operator satisfying condition (ψ) », Ann. of Math. 139 (1994), p. 363-393. | MR | Zbl

[21] -, « Energy methods via coherent states and advanced pseudo-differential calculus », Multidimensional complex analysis and partial differential equations (P. Cordaro, H. Jacobowitz & S. Gindikin, éds.), Amer. Math. Soc., 1997, p. 177-201. | MR | Zbl

[22] -, « Perturbation and energy estimates », Ann. Sci. Éc. Norm. Sup. 31 (1998), p. 843-886. | EuDML | Numdam | MR | Zbl

[23] -, « When is a pseudo-differential equation solvable? », Ann. Inst. Fourier (Grenoble) 50 (2000), p. 443-460. | EuDML | Numdam | MR | Zbl

[24] -, « Solving pseudo-differential equations », Proceedings of the ICM 2002 in Beijing, vol. II, Higher Education Press, 2002, p. 711-720. | MR | Zbl

[25] H. Lewy - « An example of a smooth linear partial differential equation without solution », Ann. of Math. 66 (1957), p. 155-158. | MR | Zbl

[26] S. Mizohata - « Solutions nulles et solutions non analytiques », J. Math. Kyoto Univ. 1 (1962), p. 271-302. | MR | Zbl

[27] R. Moyer - « Local solvability in two dimensions: necessary conditions for the principal type case », mimeographed manuscript, University of Kansas, 1978.

[28] L. Nirenberg & F. Treves - « Solvability of a first order linear partial differential equation », Comm. Pure Appl. Math. 16 (1963), p. 331-351. | MR | Zbl

[29] -, « On local solvability of linear partial differential equations. I. Necessary conditions », Comm. Pure Appl. Math. 23 (1970), p. 1-38. | MR | Zbl

[30] -, « On local solvability of linear partial differential equations. II.Sufficient conditions », Comm. Pure Appl. Math. 23 (1970), p. 459-509. | MR | Zbl

[31] -, « On local solvability of linear partial differential equations. Correction », Comm. Pure Appl. Math. 24 (1971), p. 279-288. | MR | Zbl

[32] J.-M. Trépreau - « Sur la résolubilité analytique microlocale des opérateurs pseudo-différentiels de type principal », Thèse, Université de Reims, 1984.

Cited by Sources: