Rings of differential operators over rational affine curves
Bulletin de la Société Mathématique de France, Volume 118 (1990) no. 2, pp. 193-209.
@article{BSMF_1990__118_2_193_0,
     author = {Letzter, Gail and Makar-Limanov, Leonid},
     title = {Rings of differential operators over rational affine curves},
     journal = {Bulletin de la Soci\'et\'e Math\'ematique de France},
     pages = {193--209},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {118},
     number = {2},
     year = {1990},
     doi = {10.24033/bsmf.2143},
     mrnumber = {91m:16023},
     zbl = {0722.16013},
     language = {en},
     url = {http://www.numdam.org/articles/10.24033/bsmf.2143/}
}
TY  - JOUR
AU  - Letzter, Gail
AU  - Makar-Limanov, Leonid
TI  - Rings of differential operators over rational affine curves
JO  - Bulletin de la Société Mathématique de France
PY  - 1990
SP  - 193
EP  - 209
VL  - 118
IS  - 2
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/bsmf.2143/
DO  - 10.24033/bsmf.2143
LA  - en
ID  - BSMF_1990__118_2_193_0
ER  - 
%0 Journal Article
%A Letzter, Gail
%A Makar-Limanov, Leonid
%T Rings of differential operators over rational affine curves
%J Bulletin de la Société Mathématique de France
%D 1990
%P 193-209
%V 118
%N 2
%I Société mathématique de France
%U http://www.numdam.org/articles/10.24033/bsmf.2143/
%R 10.24033/bsmf.2143
%G en
%F BSMF_1990__118_2_193_0
Letzter, Gail; Makar-Limanov, Leonid. Rings of differential operators over rational affine curves. Bulletin de la Société Mathématique de France, Volume 118 (1990) no. 2, pp. 193-209. doi : 10.24033/bsmf.2143. http://www.numdam.org/articles/10.24033/bsmf.2143/

[1] Amitsur (S.A.). - Commutative Linear Differential Operators, Pacific Journal of Mathematics, t. 8, 1958, p. 1-10. | MR | Zbl

[2] Dixmier (J.). - Sur les algèbres de Weyl, Bull. Soc. Math. France, t. 96, 1968, p. 209-242. | Numdam | MR | Zbl

[3] Goodearl (K.). - Centralizers in Differential, Pseudodifferential, and Franctional Differential Operator Rings, Rocky Mountain Journal of Mathematics, t. 13, 1983, p. 573-618. | MR | Zbl

[4] Letzter (G.). - Non Isomorphic Curves with Isomorphic Rings of Differential Operators, preprint.

[5] Makar-Limanov (L.). - Rings of Differential Operators on Algebraic Curves, J. of the London Mathematical Society, t. 21, 1989, p. 538-540. | MR | Zbl

[6] Matsamura (H.). - Commutative Algebra. - W.A. Benjamin Co, New York, 1970. | Zbl

[7] Musson (I. M.). - Some Rings of Differential Operators which are Morita Equivalent to the Weyl Algebra A1, Proc. Amer. Math. Soc., t. 98, 1986, p. 29-30. | MR | Zbl

[8] Perkins (P.). - Commutative Subalgebras of the Ring of Differential Operators on a Curve, Pacific J. Math., t. 139, 1989, p. 279-302. | MR | Zbl

[9] Smith (S.P.) and Stafford (J.T.). - Differential Operators on an Affine Curve, Proc. London Math. Soc., t. 56, 1988, p. 229-259. | MR | Zbl

[10] Stafford (J.T.). - Endomorphisms of Right Ideals of the Weyl Algebra, Transactions of the AMS, t. 299, 1987, p. 623-639. | MR | Zbl

Cited by Sources: