In this article we study the Ahlfors regular conformal gauge of a compact metric space , and its conformal dimension . Using a sequence of finite coverings of , we construct distances in its Ahlfors regular conformal gauge of controlled Hausdorff dimension. We obtain in this way a combinatorial description, up to bi-Lipschitz homeomorphisms, of all the metrics in the gauge. We show how to compute using the critical exponent associated to the combinatorial modulus.
Dans cet article, on étudie la jauge conforme Ahlfors régulière d’un espace métrique compact et sa dimension conforme . À l’aide d’une suite de recouvrements finis de , on construit des distances dans sa jauge Ahlfors régulière de dimension de Hausdorff contrôlée. On obtient ainsi une description combinatoire, à homéomorphismes bi-Lipschitz près, de toutes les métriques dans la jauge. On montre comment calculer à partir de modules combinatoires en considérant un exposant critique .
Keywords: Ahlfors regular, conformal gauge, conformal dimension, combinatorial modulus, Gromov-hyperbolic
Keywords: Ahlfors régulier, jauge conforme, dimension conforme, module combinatoire, Gromov-hyperbolique
@article{ASENS_2013_4_46_3_495_0, author = {Carrasco Piaggio, Matias}, title = {On the conformal gauge of a compact metric space}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {495--548}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 46}, number = {3}, year = {2013}, doi = {10.24033/asens.2195}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2195/} }
TY - JOUR AU - Carrasco Piaggio, Matias TI - On the conformal gauge of a compact metric space JO - Annales scientifiques de l'École Normale Supérieure PY - 2013 SP - 495 EP - 548 VL - 46 IS - 3 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2195/ DO - 10.24033/asens.2195 LA - en ID - ASENS_2013_4_46_3_495_0 ER -
%0 Journal Article %A Carrasco Piaggio, Matias %T On the conformal gauge of a compact metric space %J Annales scientifiques de l'École Normale Supérieure %D 2013 %P 495-548 %V 46 %N 3 %I Société mathématique de France %U http://www.numdam.org/articles/10.24033/asens.2195/ %R 10.24033/asens.2195 %G en %F ASENS_2013_4_46_3_495_0
Carrasco Piaggio, Matias. On the conformal gauge of a compact metric space. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 46 (2013) no. 3, pp. 495-548. doi : 10.24033/asens.2195. http://www.numdam.org/articles/10.24033/asens.2195/
[1] Conformal invariants: topics in geometric function theory, McGraw-Hill Book Co., 1973. | MR
,[2] Quasiconformal geometry of fractals, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, 1349-1373. | MR
,[3] Uniformizing Gromov hyperbolic spaces, Astérisque 270 (2001). | MR
, & ,[4] Quasisymmetric parametrizations of two-dimensional metric spheres, Invent. Math. 150 (2002), 127-183. | MR
& ,[5] Conformal dimension and Gromov hyperbolic groups with 2-sphere boundary, Geom. Topol. 9 (2005), 219-246. | MR
& ,[6] Combinatorial modulus, the combinatorial Loewner property, and Coxeter groups, Groups Geom. Dyn. 7 (2013), 39-107. | MR
& ,[7] Some applications of -cohomology to boundaries of Gromov hyperbolic spaces, preprint arXiv:1203.1233.
& ,[8] Cohomologie et espaces de Besov, J. reine angew. Math. 558 (2003), 85-108. | MR
& ,[9] The combinatorial Riemann mapping theorem, Acta Math. 173 (1994), 155-234. | MR
,[10] Jauge conforme des espaces métriques compacts, Thèse, Université Aix-Marseille, 2011.
,[11] Conformal dimension and canonical splittings of hyperbolic groups, preprint arXiv:1301.6492.
,[12] A theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), 601-628. | MR
,[13] Géométrie et théorie des groupes, Lecture Notes in Math. 1441, Springer, 1990. | MR
, & ,[14] Fractured fractals and broken dreams, Oxford Lecture Series in Mathematics and its Applications 7, The Clarendon Press Oxford Univ. Press, 1997. | MR
& ,[15] The -cohomology and the conformal dimension of hyperbolic cones, Geom. Dedicata 68 (1997), 263-279. | MR
,[16] Sur les groupes hyperboliques d'après Mikhael Gromov, Progress in Math. 83, Birkhäuser, 1990. | MR
& (éds.),[17] Empilements de cercles et modules combinatoires, Ann. Inst. Fourier (Grenoble) 59 (2009), 2175-2222. | Numdam | MR
,[18] Géométrie quasiconforme, analyse au bord des espaces métriques hyperboliques et rigidités, d'après Mostow, Pansu, Bourdon, Pajot, Bonk, Kleiner, Séminaire Bourbaki, vol. 2007/08, exp. no 993, Astérisque 326 (2009), 321-362. | Numdam | MR
,[19] Thurston obstructions and Ahlfors regular conformal dimension, J. Math. Pures Appl. 90 (2008), 229-241. | MR
& ,[20] Coarse expanding conformal dynamics, Astérisque 325 (2009). | MR
& ,[21] Lectures on analysis on metric spaces, Universitext, Springer, 2001. | MR
,[22] Conformal Assouad dimension and modulus, Geom. Funct. Anal. 14 (2004), 1278-1321. | MR
& ,[23] The asymptotic geometry of negatively curved spaces: uniformization, geometrization and rigidity, in International Congress of Mathematicians. Vol. II, Eur. Math. Soc., Zürich, 2006, 743-768. | MR
,[24] Conformal dimension does not assume values between zero and one, Duke Math. J. 134 (2006), 1-13. | MR
,[25] Dimensions conformes, espaces Gromov-hyperboliques et ensembles autosimilaires, in Séminaire de Théorie Spectrale et Géométrie. Vol. 22. Année 2003-2004, Sémin. Théor. Spectr. Géom. 22, Univ. Grenoble I, 2004, 153-182. | Numdam | MR
& ,[26] Conformal dimension; theory and application, University Lecture Series 54, Amer. Math. Soc., 2010. | MR
& ,[27] Dimension conforme et sphère à l'infini des variétés à courbure négative, Ann. Acad. Sci. Fenn. Ser. A I Math. 14 (1989), 177-212. | MR
,[28] Metric spaces and mappings seen at many scales, in Metric structures for Riemannian and Non-Riemmannian spaces (M. Gromov, éd.), Birkhäuser, 2001.
,[29] Quasisymmetric embeddings of metric spaces, Ann. Acad. Sci. Fenn. Ser. A I Math. 5 (1980), 97-114. | MR
& ,[30] Quasiconformality and quasisymmetry in metric measure spaces, Ann. Acad. Sci. Fenn. Math. 23 (1998), 525-548. | MR
,[31] On measures with the doubling condition, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), 666-675; English translation: Math. USSR-Izv. 30 (1988), 629-638. | MR
& ,[32] Hausdorff dimension and doubling measures on metric spaces, Proc. Amer. Math. Soc. 126 (1998), 1453-1459. | MR
,Cited by Sources: