Représentations localement analytiques de GL 3 ( p )
[Locally analytic representations of GL 3 ( p )]
Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 44 (2011) no. 1, pp. 43-145.

We construct a complex of locally analytic representations of GL 3 ( p ), which is associated to some semi-stable 3-dimensional representations of the absolute Galois group of p . Then we show that we can retrieve the (ϕ,N)-filtered module of the Galois representation in the space of morphisms, in the derived category of D( GL 3 ( p ))-modules, of this complex in the de Rham-complex of the 2-dimensional Drinfel’d’s space. For the proof, we compute some spaces of locally analytic cohomology of unipotent subgroups with coefficients in some locally analytic principal series.

Nous construisons un complexe de représentations localement analytiques de GL 3 ( p ), associé à certaines représentations semi-stables de dimension 3 du groupe de Galois absolu de p . Nous montrons ensuite que l’on peut retrouver le (ϕ,N)-module filtré de la représentation galoisienne en considérant les morphismes, dans la catégorie dérivée des D( GL 3 ( p ))-modules, de ce complexe dans le complexe de de Rham de l’espace de Drinfel’d de dimension 2. La preuve requiert le calcul de certains espaces de cohomologie localement analytiques de sous-groupes unipotents à coefficients dans des séries principales localement analytiques.

DOI: 10.24033/asens.2140
Classification: 11F70,  11S20,  11S37,  11S80,  14G22,  22E50
Keywords: p-adic Langlands correspondence, Drinfel’d’s spaces, p-adic locally analytic representations
@article{ASENS_2011_4_44_1_43_0,
     author = {Schraen, Benjamin},
     title = {Repr\'esentations localement analytiques de $\mathrm {GL}_3(\mathbb {Q}_{p})$},
     journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure},
     pages = {43--145},
     publisher = {Soci\'et\'e math\'ematique de France},
     volume = {4e s{\'e}rie, 44},
     number = {1},
     year = {2011},
     doi = {10.24033/asens.2140},
     zbl = {1235.11108},
     mrnumber = {2760195},
     language = {fr},
     url = {http://www.numdam.org/articles/10.24033/asens.2140/}
}
TY  - JOUR
AU  - Schraen, Benjamin
TI  - Représentations localement analytiques de $\mathrm {GL}_3(\mathbb {Q}_{p})$
JO  - Annales scientifiques de l'École Normale Supérieure
PY  - 2011
DA  - 2011///
SP  - 43
EP  - 145
VL  - 4e s{\'e}rie, 44
IS  - 1
PB  - Société mathématique de France
UR  - http://www.numdam.org/articles/10.24033/asens.2140/
UR  - https://zbmath.org/?q=an%3A1235.11108
UR  - https://www.ams.org/mathscinet-getitem?mr=2760195
UR  - https://doi.org/10.24033/asens.2140
DO  - 10.24033/asens.2140
LA  - fr
ID  - ASENS_2011_4_44_1_43_0
ER  - 
%0 Journal Article
%A Schraen, Benjamin
%T Représentations localement analytiques de $\mathrm {GL}_3(\mathbb {Q}_{p})$
%J Annales scientifiques de l'École Normale Supérieure
%D 2011
%P 43-145
%V 4e s{\'e}rie, 44
%N 1
%I Société mathématique de France
%U https://doi.org/10.24033/asens.2140
%R 10.24033/asens.2140
%G fr
%F ASENS_2011_4_44_1_43_0
Schraen, Benjamin. Représentations localement analytiques de $\mathrm {GL}_3(\mathbb {Q}_{p})$. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 44 (2011) no. 1, pp. 43-145. doi : 10.24033/asens.2140. http://www.numdam.org/articles/10.24033/asens.2140/

[1] I. N. Bernstein & A. V. Zelevinsky, Induced representations of reductive 𝔭-adic groups. I, Ann. Sci. École Norm. Sup. 10 (1977), 441-472. | Numdam | Zbl

[2] S. J. Bloch, Higher regulators, algebraic K-theory, and zeta functions of elliptic curves, CRM Monograph Series 11, Amer. Math. Soc., 2000. | Zbl

[3] A. Borel, Cohomologie de SL n et valeurs de fonctions zeta aux points entiers, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 4 (1977), 613-636. | Numdam | Zbl

[4] A. Borel & N. R. Wallach, Continuous cohomology, discrete subgroups, and representations of reductive groups, Annals of Math. Studies 94, Princeton Univ. Press, 1980. | Zbl

[5] N. Bourbaki, Topologie générale. Chapitre 9, Hermann, 1974.

[6] C. Breuil, Sur quelques représentations modulaires et p-adiques de GL 2 (𝐐 p ). II, J. Inst. Math. Jussieu 2 (2003), 23-58. | Zbl

[7] C. Breuil, Invariant et série spéciale p-adique, Ann. Sci. École Norm. Sup. 37 (2004), 559-610. | Zbl

[8] C. Breuil, Série spéciale p-adique et cohomologie étale complétée, Astérisque 331 (2010), 65-115. | Zbl

[9] C. Breuil & A. Mézard, Représentations semi-stables de GL 2 ( p ), demi-plan p-adique et réduction modulo p, Astérisque 331 (2010), 117-178. | Zbl

[10] C. Breuil & P. Schneider, First steps towards p-adic Langlands functoriality, J. reine angew. Math. 610 (2007), 149-180. | Zbl

[11] C. J. Bushnell & G. Henniart, The local Langlands conjecture for GL (2), Grund. Math. Wiss. 335, Springer, 2006. | Zbl

[12] W. Casselman & D. Wigner, Continuous cohomology and a conjecture of Serre's, Invent. Math. 25 (1974), 199-211. | Zbl

[13] R. F. Coleman, Dilogarithms, regulators and p-adic L-functions, Invent. Math. 69 (1982), 171-208. | Zbl

[14] R. F. Coleman & A. Iovita, Hidden structures on semistable curves, Astérisque 331 (2010), 179-254. | Zbl

[15] P. Colmez, Une correspondance de Langlands locale p-adique pour les représentations semi-stables de dimension 2, preprint, 2004.

[16] P. Colmez, La série principale unitaire de GL 2 (𝐐 p ), Astérisque 330 (2010), 213-262. | Zbl

[17] P. Colmez, Représentations de GL 2 (𝐐 p ) et (φ,Γ)-modules, Astérisque 330 (2010), 281-509. | Zbl

[18] P. Colmez & J.-M. Fontaine, Construction des représentations p-adiques semi-stables, Invent. Math. 140 (2000), 1-43. | MR | Zbl

[19] J. F. Dat, Espaces symétriques de Drinfeld et correspondance de Langlands locale, Ann. Sci. École Norm. Sup. 39 (2006), 1-74. | Zbl

[20] J. Dixmier, Algèbres enveloppantes, Gauthier-Villars, 1974, Cahiers scientifiques, fasc. XXXVII. | Zbl

[21] M. Emerton, p-adic L-functions and unitary completions of representations of p-adic reductive groups, Duke Math. J. 130 (2005), 353-392. | MR | Zbl

[22] M. Emerton, Jacquet modules of locally analytic representations of p-adic reductive groups II. The relation to parabolic induction, à paraître dans J. Inst. Math. de Jussieu.

[23] J.-M. Fontaine, Représentations p-adiques semi-stables, Astérisque 223 (1994), 113-184. | MR | Zbl

[24] H. Frommer, The locally analytic principal series of split reductive groups, preprint SFB 478/265 http://wwwmath.uni-muenster.de/sfb/about/publ/heft265.ps, 2003.

[25] E. Grosse-Klönne, Frobenius and monodromy operators in rigid analysis, and Drinfelʼd's symmetric space, J. Algebraic Geom. 14 (2005), 391-437. | MR | Zbl

[26] E. Grosse-Klönne, On the p-adic cohomology of some p-adically uniformized varieties, J. Algebraic Geom. (2010). | MR | Zbl

[27] J. E. Humphreys, Introduction to Lie algebras and representation theory, Graduate Texts in Math. 9, Springer, 1978. | MR | Zbl

[28] J. E. Humphreys, Representations of semisimple Lie algebras in the BGG category 𝒪, Graduate Studies in Math. 94, Amer. Math. Soc., 2008. | MR | Zbl

[29] A. Iovita & M. Spiess, Logarithmic differential forms on p-adic symmetric spaces, Duke Math. J. 110 (2001), 253-278. | MR | Zbl

[30] T. Ito, Weight-monodromy conjecture for p-adically uniformized varieties, Invent. Math. 159 (2005), 607-656. | MR | Zbl

[31] B. Keller, Derived categories and their uses, in Handbook of algebra, Vol. 1, North-Holland, 1996, 671-701. | MR | Zbl

[32] A. W. Knapp, Lie groups, Lie algebras, and cohomology, Mathematical Notes 34, Princeton Univ. Press, 1988. | MR | Zbl

[33] A. W. Knapp, Representation theory of semisimple groups, Princeton Landmarks in Mathematics, Princeton Univ. Press, 2001. | MR | Zbl

[34] J. Kohlhaase, Invariant distributions on p-adic analytic groups, Duke Math. J. 137 (2007), 19-62. | MR | Zbl

[35] J. Kohlhaase, The cohomology of locally analytic representations, preprint SFB 478/491 http://wwwmath.uni-muenster.de/sfb/about/publ/heft491.pdf, à paraître dans J. reine angew. Math. | MR | Zbl

[36] J.-L. Koszul, Homologie et cohomologie des algèbres de Lie, Bull. Soc. Math. France 78 (1950), 65-127. | Numdam | MR | Zbl

[37] C. T. Féaux De Lacroix, Einige Resultate über die topologischen Darstellungen p-adischer Liegruppen auf unendlich dimensionalen Vektorräumen über einem p-adischen Körper, Schriftenreihe Math. Inst. Univ. Münster 23 (1999), 1-111. | MR | Zbl

[38] C. C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), 1-33. | MR | Zbl

[39] S. Orlik, On extensions of generalized Steinberg representations, J. Algebra 293 (2005), 611-630. | MR | Zbl

[40] S. Orlik, Equivariant vector bundles on Drinfeld's upper half space, Invent. Math. 172 (2008), 585-656. | MR | Zbl

[41] S. Orlik & M. Strauch, On Jordan-Hölder Series of some Locally Analytic Representations, preprint arXiv :1001.0323.

[42] S. Orlik & M. Strauch, On the irreducibility of locally analytic principal series representations, preprint arXiv :math/0612809, à paraître dans Representation Theory. | MR | Zbl

[43] D. Prasad, Locally algebraic representations of p-adic groups, Representation Theory 5 (2001), 111-128. | MR | Zbl

[44] P. Schneider, The cohomology of local systems on p-adically uniformized varieties, Math. Ann. 293 (1992), 623-650. | MR | Zbl

[45] P. Schneider, Nonarchimedean functional analysis, Springer Monographs in Math., Springer, 2002. | MR | Zbl

[46] P. Schneider & U. Stuhler, The cohomology of p-adic symmetric spaces, Invent. Math. 105 (1991), 47-122. | MR | Zbl

[47] P. Schneider & J. Teitelbaum, U(𝔤)-finite locally analytic representations, Represent. Theory 5 (2001), 111-128. | MR | Zbl

[48] P. Schneider & J. Teitelbaum, Locally analytic distributions and p-adic representation theory, with applications to GL 2 , J. Amer. Math. Soc. 15 (2002), 443-468. | MR | Zbl

[49] P. Schneider & J. Teitelbaum, p-adic boundary values, Astérisque 278 (2002), 51-125. | MR | Zbl

[50] P. Schneider & J. Teitelbaum, Algebras of p-adic distributions and admissible representations, Invent. Math. 153 (2003), 145-196. | MR | Zbl

[51] P. Schneider & J. Teitelbaum, Duality for admissible locally analytic representations, Represent. Theory 9 (2005), 297-326. | MR | Zbl

[52] B. Schraen, Représentations p-adiques de GL 2 (L) et catégories dérivées, Israel J. Math. 176 (2010), 307-361. | MR | Zbl

[53] E. De Shalit, The p-adic monodromy-weight conjecture for p-adically uniformized varieties, Compos. Math. 141 (2005), 101-120. | MR | Zbl

[54] C. A. Weibel, An introduction to homological algebra, Cambridge Studies in Advanced Math. 38, Cambridge Univ. Press, 1994. | MR | Zbl

[55] N. Yoneda, On Ext and exact sequences, J. Fac. Sci. Univ. Tokyo Sect. I 8 (1960), 507-576. | MR | Zbl

Cited by Sources: