[L'équation de Szegő cubique]
On considère l’équation hamiltonienne suivante sur l’espace de Hardy du cercle
We consider the following Hamiltonian equation on the Hardy space on the circle,
Classification : 35B15, 37K10, 47B35
Mots clés : Équations de schrödinger non linéaires, systèmes hamiltoniens intégrables, paires de Lax, opérateurs de Hankel
@article{ASENS_2010_4_43_5_761_0, author = {G\'erard, Patrick and Grellier, Sandrine}, title = {The cubic {Szeg\H{o}} equation}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {761--810}, publisher = {Soci\'et\'e math\'ematique de France}, volume = {Ser. 4, 43}, number = {5}, year = {2010}, doi = {10.24033/asens.2133}, zbl = {1228.35225}, mrnumber = {2721876}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.2133/} }
TY - JOUR AU - Gérard, Patrick AU - Grellier, Sandrine TI - The cubic Szegő equation JO - Annales scientifiques de l'École Normale Supérieure PY - 2010 DA - 2010/// SP - 761 EP - 810 VL - Ser. 4, 43 IS - 5 PB - Société mathématique de France UR - http://www.numdam.org/articles/10.24033/asens.2133/ UR - https://zbmath.org/?q=an%3A1228.35225 UR - https://www.ams.org/mathscinet-getitem?mr=2721876 UR - https://doi.org/10.24033/asens.2133 DO - 10.24033/asens.2133 LA - en ID - ASENS_2010_4_43_5_761_0 ER -
Gérard, Patrick; Grellier, Sandrine. The cubic Szegő equation. Annales scientifiques de l'École Normale Supérieure, Série 4, Tome 43 (2010) no. 5, pp. 761-810. doi : 10.24033/asens.2133. http://www.numdam.org/articles/10.24033/asens.2133/
[1] Mathematical methods of classical mechanics, Springer, 1978. | MR 690288 | Zbl 0386.70001
,[2] On the ill-posedness of the IVP for the generalized Korteweg-de Vries and nonlinear Schrödinger equations, J. London Math. Soc. 53 (1996), 551-559. | MR 1396718 | Zbl 0855.35112
, , , & ,[3] Nonlinear Schrödinger evolution equations, Nonlinear Anal. 4 (1980), 677-681. | MR 582536 | Zbl 0451.35023
& ,[4] An instability property of the nonlinear Schrödinger equation on , Math. Res. Lett. 9 (2002), 323-335. | Zbl 1003.35113
, & ,[5] Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Amer. J. Math. 126 (2004), 569-605. | Zbl 1067.58027
, & ,[6] Bilinear eigenfunction estimates and the nonlinear Schrödinger equation on surfaces, Invent. Math. 159 (2005), 187-223. | Zbl 1092.35099
, & ,[7] Multilinear eigenfunction estimates and global existence for the three dimensional nonlinear Schrödinger equations, Ann. Sci. École Norm. Sup. 38 (2005), 255-301. | Zbl 1116.35109
, & ,[8] High frequency solutions of the nonlinear Schrödinger equation on surfaces, Quart. Appl. Math. 68 (2010), 61-71. | Zbl 1187.35232
, & ,[9] Weakly turbulent solutions for the cubic defocusing nonlinear Schrödinger equation, preprint arXiv:08081742.
, , , & ,[10] Nonlinear Schrödinger equations in inhomogeneous media: wellposedness and illposedness of the Cauchy problem, in International Congress of Mathematicians. Vol. III, Eur. Math. Soc., Zürich, 2006, 157-182. | Zbl 1106.35096
,[11] L'équation de Szegő cubique, Séminaire X-EDP, École polytechnique, 2008. | Zbl 1213.35397
& ,[12] Stability theory of solitary waves in the presence of symmetry. II, J. Funct. Anal. 94 (1990), 308-348. | Zbl 0711.58013
, & ,[13] KdV & KAM, Ergebnisse Math. Grenzg. 45, Springer, 2003.
& ,[14] Zur Theorie der Elimination einer Variablen aus zwei algebraischen Gleichungen, Monatsber. königl. preuss. Akad. Wiss. (1881), 535-600, reprinted in Mathematische Werke, vol. 2, 113-192, Chelsea, 1968. | JFM 13.0114.02
,[15] Analysis of Hamiltonian PDEs, Oxford Lecture Series in Mathematics and its Applications 19, Oxford Univ. Press, 2000. | MR 1857574 | Zbl 0960.35001
,[16] Integrals of nonlinear equations of evolution and solitary waves, Comm. Pure Appl. Math. 21 (1968), 467-490. | MR 235310 | Zbl 0162.41103
,[17] On bounded bilinear forms, Ann. of Math. 65 (1957), 153-162. | MR 82945 | Zbl 0077.10605
,[18] Bose-Einstein condensates in the lowest Landau level: Hamiltonian dynamics, Rev. Math. Phys. 19 (2007), 101-130. | MR 2293086 | Zbl 1129.82023
,[19] Operators, functions, and systems: an easy reading. Vol. 1, Mathematical Surveys and Monographs 92, Amer. Math. Soc., 2002. | MR 1864396 | Zbl 1007.47001
,[20] A proof of Trudinger's inequality and its application to nonlinear Schrödinger equations, Nonlinear Anal. 14 (1990), 765-769. | MR 1049119 | Zbl 0715.35073
,[21] Hankel operators of class and their applications (rational approximation, Gaussian processes, the problem of majorization of operators), Math. USSR Sb. 41 (1982), 443-479. | Zbl 0478.47015
,[22] Hankel operators and their applications, Springer Monographs in Math., Springer, 2003. | MR 1949210 | Zbl 1030.47002
,[23] Real and complex analysis, third éd., McGraw-Hill Book Co., 1987, Analyse réelle et complexe, Masson, 1980. | MR 662565 | Zbl 0278.26001
,[24] À la frontière entre EDP semi- et quasi-linéaires, HDR, Université Paris-Sud Orsay, 2003.
,[25] On the solvability of a mixed problem for a nonlinear equation of Schrödinger type, Sov. Math. Dokl. 29 (1984), 281-284. | MR 745511 | Zbl 0585.35019
,[26] Nonlinear Schrödinger equations and sharp interpolation estimates, Comm. Math. Phys. 87 (1982/83), 567-576. | MR 691044 | Zbl 0527.35023
,[27] Non-stationary flow of an ideal incompressible liquid, USSR Comput. Math. Math. Phys. 3 (1963), 1407-1456 (english), Zh. Vuch. Mat. 3 (1963), 1032-1066 (russian). | Zbl 0147.44303
,[28] Exact theory of two-dimensional self-focusing and one-dimensional self-modulation of waves in nonlinear media, Soviet Physics JETP 34 (1972), 62-69. | MR 406174
& ,Cité par Sources :