@article{ASENS_1996_4_29_4_399_0, author = {Graczyk, Jacek and \'Swi\k{a}tek, Grzegorz}, title = {Induced expansion for quadratic polynomials}, journal = {Annales scientifiques de l'\'Ecole Normale Sup\'erieure}, pages = {399--482}, publisher = {Elsevier}, volume = {Ser. 4, 29}, number = {4}, year = {1996}, doi = {10.24033/asens.1744}, mrnumber = {98d:58152}, zbl = {0867.58048}, language = {en}, url = {http://www.numdam.org/articles/10.24033/asens.1744/} }
TY - JOUR AU - Graczyk, Jacek AU - Świątek, Grzegorz TI - Induced expansion for quadratic polynomials JO - Annales scientifiques de l'École Normale Supérieure PY - 1996 SP - 399 EP - 482 VL - 29 IS - 4 PB - Elsevier UR - http://www.numdam.org/articles/10.24033/asens.1744/ DO - 10.24033/asens.1744 LA - en ID - ASENS_1996_4_29_4_399_0 ER -
%0 Journal Article %A Graczyk, Jacek %A Świątek, Grzegorz %T Induced expansion for quadratic polynomials %J Annales scientifiques de l'École Normale Supérieure %D 1996 %P 399-482 %V 29 %N 4 %I Elsevier %U http://www.numdam.org/articles/10.24033/asens.1744/ %R 10.24033/asens.1744 %G en %F ASENS_1996_4_29_4_399_0
Graczyk, Jacek; Świątek, Grzegorz. Induced expansion for quadratic polynomials. Annales scientifiques de l'École Normale Supérieure, Serie 4, Volume 29 (1996) no. 4, pp. 399-482. doi : 10.24033/asens.1744. http://www.numdam.org/articles/10.24033/asens.1744/
[1] Non-existence of wandering intervals and structure of topological attractors for one dimensional dynamical systems (Erg. Th. and Dyn. Sys., Vol. 9, 1989, pp. 751-758). | MR | Zbl
and ,[2] The iteration of cubic polynomials, Part II : patterns and parapatterns (Acta Math., Vol. 169, 1992, pp. 229-325). | MR | Zbl
and ,[3] On the dynamics of polynomial-like mappings (Ann. Sci. Ec. Norm. Sup. (Paris), Vol. 18, 1985, pp. 287-343). | EuDML | Numdam | MR | Zbl
and ,[4] Dynamics of non-degenerate upper maps, preprint of Queen's University at Kingston, Canada, 1991).
, Ph. D. Thesis (Mathematics Department of Warsaw University (1990) ; also :[5] Critical circle maps near bifurcation (Stony Brook IMS preprint, 1991, Proposition 2). | Zbl
and ,[6] Limit sets of S-unimodal maps with zero entropy (Commun. Math. Phys., Vol. 110, 1987, pp. 655-659). | MR | Zbl
,[7] Distortion of S-unimodal maps (Annals of Math., Vol. 132, 1990, pp. 71-130). | MR | Zbl
and ,[8] Some remarks about recent results on S-unimodal maps (Annales de l'Institut Henri Poincaré, Physique Théorique, Vol. 53, 1990, pp. 413-425). | EuDML | Numdam | Zbl
, and ,[9] Absolutely continuous invariant measures for one-parameter families of one-dimensional maps (Commun. Math. Phys., Vol. 81, 1981, pp. 39-88). | MR | Zbl
,[10] Metric properties of non-renormalizable S-unimodal maps (preprint IHES, no. IHES/M/91/16, 1991).
and ,[11] Quasisymmetric conjugacies between unimodal maps (Stony Brook preprint, Vol. 16, 1991).
and ,[12] Fibonacci maps revisited (manuscript, 1992).
and ,[13] Quasikonforme Abbildungen (Springer-Verlag, Berlin-Heidelberg-New York, 1965). | MR | Zbl
and ,[14] Milnor's attractors, persistent recurrence and renormalization, in (Topological methods in modern mathematics, Publish or Perish, Inc., Houston TX, 1993). | MR | Zbl
,[15] The dynamics of the Fibonacci polynomial (Jour. of the AMS, Vol. 6, 1993, pp. 425-457). | MR | Zbl
and ,[16]
, Ph. D. thesis (Math. Department of Delf University of Technology, 1990 ; also : IMS preprint, Vol. 17, 1992).[17] The Yoccoz theorem on local connectivity of Julia sets. A proof with pictures (class notes, Stony Brook, 1991-1992).
,[18] One-Dimensional Dynamics (Springer-Verlag, New York, 1993). | MR | Zbl
and ,[19] Iterates of maps on an interval (Lecture Notes in Mathematics, Vol. 999, Berlin, Heidelberg, New York : Springer, 1983). | MR | Zbl
,[20] Bounds, quadratic differentials and renormalization conjectures (to appear in American Mathematical Society Centennial Publications, Vol. 2, American Mathematical Society, Providence, R.I., 1991). | Zbl
,[21] Hyperbolicity is dense in the real quadratic family (preprint Stony Brook, 1992).
,[22] Untersuchungen über konforme und quasikonforme Abbildung (Deutsche Mathematik, Vol. 3, pp. 621-678). | JFM | Zbl
,[23]
, unpublished results.[24] Scalings in circle maps (1) (Commun. in Math. Phys., Vol. 134, 1990, pp. 89-107). | MR | Zbl
and ,Cited by Sources: