In this article, we study the approximation of a probability measure on by its empirical measure interpreted as a random quantization. As error criterion we consider an averaged th moment Wasserstein metric. In the case where , we establish fine upper and lower bounds for the error, a high resolution formula. Moreover, we provide a universal estimate based on moments, a Pierce type estimate. In particular, we show that quantization by empirical measures is of optimal order under weak assumptions.
Dans cet article, nous étudions l’approximation d’une mesure de probabilité sur par sa mesure empirique , interprétée comme quantification aléatoire. Comme critère d’erreur, nous considérons une moyenne de métrique de Wasserstein d’ordre . Dans le cas , nous établissons des bornes supérieures et inférieures améliorées pour l’erreur, une formule haute résolution. De plus, nous donnons une estimation universelle à base de moments, nomméee estimation du type Pierce. En particulier, nous prouvons que, sous de faibles hypothèses, la quantification par des mesures empiriques est d'ordre optimal.
Keywords: constructive quantization, Wasserstein metric, transportation problem, Zador's theorem, Pierce's lemma, random quantization
@article{AIHPB_2013__49_4_1183_0, author = {Dereich, Steffen and Scheutzow, Michael and Schottstedt, Reik}, title = {Constructive quantization: approximation by empirical measures}, journal = {Annales de l'I.H.P. Probabilit\'es et statistiques}, pages = {1183--1203}, publisher = {Gauthier-Villars}, volume = {49}, number = {4}, year = {2013}, doi = {10.1214/12-AIHP489}, mrnumber = {3127919}, zbl = {1283.60063}, language = {en}, url = {http://www.numdam.org/articles/10.1214/12-AIHP489/} }
TY - JOUR AU - Dereich, Steffen AU - Scheutzow, Michael AU - Schottstedt, Reik TI - Constructive quantization: approximation by empirical measures JO - Annales de l'I.H.P. Probabilités et statistiques PY - 2013 SP - 1183 EP - 1203 VL - 49 IS - 4 PB - Gauthier-Villars UR - http://www.numdam.org/articles/10.1214/12-AIHP489/ DO - 10.1214/12-AIHP489 LA - en ID - AIHPB_2013__49_4_1183_0 ER -
%0 Journal Article %A Dereich, Steffen %A Scheutzow, Michael %A Schottstedt, Reik %T Constructive quantization: approximation by empirical measures %J Annales de l'I.H.P. Probabilités et statistiques %D 2013 %P 1183-1203 %V 49 %N 4 %I Gauthier-Villars %U http://www.numdam.org/articles/10.1214/12-AIHP489/ %R 10.1214/12-AIHP489 %G en %F AIHPB_2013__49_4_1183_0
Dereich, Steffen; Scheutzow, Michael; Schottstedt, Reik. Constructive quantization: approximation by empirical measures. Annales de l'I.H.P. Probabilités et statistiques, Volume 49 (2013) no. 4, pp. 1183-1203. doi : 10.1214/12-AIHP489. http://www.numdam.org/articles/10.1214/12-AIHP489/
[1] On optimal matchings. Combinatorica 4 (4) (1983) 259-264. | MR
, and .[2] Combinatorial optimization over two random point sets. Preprint, 2011. Available at arXiv:1103.2734v2.
and .[3] The shortest path through many points. Proc. Cambridge Philos. Soc. 55 (1959) 299-327. | MR
, and .[4] On the mean speed of convergence of empirical and occupation measures in Wasserstein distance. Preprint, 2011. Available at arXiv:1105.5263v1.
and .[5] Multidimensional asymptotic quantization theory with th power distortion measures. IEEE Trans. Inform. Theory 28 (1982) 239-247. | MR
and .[6] Quantization of probability distributions under norm-based distortion measures. Statist. Decisions 22 (4) (2004) 261-282. | MR
, , and .[7] Asymptotic formulae for coding problems and intermediate optimization problems: A review. In Trends in Stochastic Analysis 187-232. Cambridge Univ. Press, Cambridge, 2009. | MR
.[8] The high resolution vector quantization problem with Orlicz norm distortion. J. Theoret. Probab. 24 (2) (2011) 517-544. | MR
and .[9] Asymptotics for transportation cost in high dimensions. J. Theoret. Probab. 8 (1) (1995) 97-118. | MR
and .[10] Vector Quantization and Signal Processing. The Springer International Series in Engineering and Computer Science 1. Springer, New York, 1992.
and .[11] Foundations of Quantization for Probability Distributions. Lecture Notes in Mathematics 1730. Springer, Berlin, 2000. | MR
and .[12] Mean rates of convergence of empirical measures in the Wasserstein metric. J. Comput. Appl. Math. 55 (3) (1994) 261-273. | MR
and .[13] Optimal transport from Lebesgue to Poisson. Preprint, 2010. Available at http://arxiv.org/abs/1012.3845v1.
and .[14] On the translocation of masses. Dokl. Akad. Nauk 37 (7-8) (1942) 227-229. | MR
.[15] On a space of completely additive functions. Vestnik Leningrad Univ. Math. 13 (7) (1958) 52-59. | MR
and .[16] Mémoire sur la théorie des déblais et des remblais. Mémoires de l'Académie Royale des Sciences XVIII-XIX (1781) 666-704.
.[17] A derandomization of the Euler scheme for scalar stochastic differential equations. Preprint 80, DFG Priority Program 1324, 2011. Available at http://www.dfg-spp1324.de/publications.php?lang=en.
, and .[18] A space quantization method for numerical integration. J. Comput. Appl. Math. 89 (1) (1998) 1-38. | MR
.[19] Optimal quantization methods and applications to numerical problems in finance. In Handbook on Numerical Methods in Finance 253-298. Birkhäuser, Boston, 2004. | MR
, and .[20] Optimal quadratic quantization for numerics: The Gaussian case. Monte Carlo Methods Appl. 9 (2) (2003) 135-165. | MR
and .[21] Sharp rate for the dual quantization problem. Preprint, 2010.
and .[22] Optimal Delaunay and Voronoi quantization schemes for pricing American style options. Preprint, 2011.
and .[23] Mass Transportation Problems. Probability and Its Applications I. Springer, New York, 1998. | MR
and .[24] Mass Transportation Problems. Probability and Its Applications II. Springer, New York, 1998. | MR
and .[25] Constructive quantization by random sampling and numerical applications. Ph.D. thesis, Technical University Berlin, 2012.
.[26] Multidimensional Diffusion Processes. Grundlehren der Mathematischen Wissenschaften 233. Springer, Berlin, 1979. | MR
and .[27] The transportation cost from the uniform measure to the empirical measure in dimension . Ann. Probab. 22 (2) (1994) 919-959. | MR
.[28] Optimal Transport: Old and New. Grundlehren der Mathematischen Wissenschaften 338. Springer, Berlin, 2009. | MR
.[29] Markov processes over denumerable products of spaces describing large systems of automata. Probl. Inf. Transm. 5 (1969) 47-52. | MR
.[30] Topics in the asymptotic quantization of continuous random variables. Bell Laboratories Technical Memorandum, 1966.
.Cited by Sources: