@article{RO_2003__37_4_249_0, author = {Faye, Alain and Boyer, Olivier}, title = {Construction de facettes pour le polytope du sac-\`a-dos quadratique en 0-1}, journal = {RAIRO - Operations Research - Recherche Op\'erationnelle}, pages = {249--271}, publisher = {EDP-Sciences}, volume = {37}, number = {4}, year = {2003}, doi = {10.1051/ro:2004008}, zbl = {1092.90030}, mrnumber = {2064601}, language = {fr}, url = {http://www.numdam.org/articles/10.1051/ro:2004008/} }
TY - JOUR AU - Faye, Alain AU - Boyer, Olivier TI - Construction de facettes pour le polytope du sac-à-dos quadratique en 0-1 JO - RAIRO - Operations Research - Recherche Opérationnelle PY - 2003 DA - 2003/// SP - 249 EP - 271 VL - 37 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ro:2004008/ UR - https://zbmath.org/?q=an%3A1092.90030 UR - https://www.ams.org/mathscinet-getitem?mr=2064601 UR - https://doi.org/10.1051/ro:2004008 DO - 10.1051/ro:2004008 LA - fr ID - RO_2003__37_4_249_0 ER -
Faye, Alain; Boyer, Olivier. Construction de facettes pour le polytope du sac-à-dos quadratique en 0-1. RAIRO - Operations Research - Recherche Opérationnelle, Tome 37 (2003) no. 4, pp. 249-271. doi : 10.1051/ro:2004008. http://www.numdam.org/articles/10.1051/ro:2004008/
[1] A tight linearization and an algorithm for zero-one quadratic programming problem. Manage. Sci. 32 (1986) 1274-1289. | MR 861711 | Zbl 0623.90054
et ,[2] Linear programming for the 0-1 quadratic knapsack problem. Eur. J. Oper. Res. 92 (1996) 310-325. | Zbl 0912.90221
et ,[3] A new upper bound for the 0-1 quadratic knapsack problem. Eur. J. Oper. Res. 112 (1999) 664-672. | Zbl 0933.90049
, et ,[4] Best network flow bounds for the quadratic knapsack problem. Lect. Notes Math. 1403 (1986) 226-235. | Zbl 0678.90061
, et ,[5] Decomposition and linearization for 0-1 quadratic programming. Ann. Oper. Res. 99 (2000) 79-93. | MR 1837733 | Zbl 0990.90073
, et ,[6] An O(nlogn) procedure for identifying facets of the knapsack polytope. Oper. Res. Lett. 31 (2003) 211-218. | MR 1967292 | Zbl 1042.90035
, et ,[7] A semidefinite programming approach to the quadratic knapsack problem. J. Comb. Optim. 4 (2000) 197-215. | MR 1772826 | Zbl 0970.90075
, et ,[8] Min-cut clustering. Math. Program. 62 (1993) 133-152. | MR 1247611 | Zbl 0807.90117
, et ,[9] Cardinality constrained Boolean quadratic polytope. Discrete Appl. Math. 79 (1997) 137-154. | MR 1478248 | Zbl 0898.90092
,[10] Lagrangean methods for the 0-1 quadratic knapsack problem. Eur. J. Oper. Res. 92 (1996) 326-341. | Zbl 0912.90222
et ,[11] Integer and Combinatorial Optimization. Wiley Intersci. Ser. Discrete Math. Optim. (1988). | MR 948455 | Zbl 0652.90067
et ,[12] The boolean quadric polytope: some characteristics, facets and relatives. Math. Program. 45 (1989) 139-172. | MR 1017216 | Zbl 0675.90056
,[13] Valid inequalities and facets of the quadratic 0-1 knapsack polytope. Rutcor Research Report 16-97 (1997) 11 p.
,[14] Lifting results for the quadratic 0-1 knapsack polytope. Rutcor Research Report 17-97 (1997) 27 p.
,[15] Computing Lower Bounds for the Quadratic assignment problem with an interior point algorithm for linear programming. Oper. Res. 43 (1995) 781-791. | MR 1361340 | Zbl 0843.90068
, et ,[16] Résolution du problème de sac-à-dos quadratique en variables bivalentes. Thèse de doctorat du CNAM Paris (2000).
,[17] Lifting the facets of zero-one polytopes. Math. Program. 15 (1978) 268-277. | MR 514612 | Zbl 0428.90042
,Cité par Sources :