Generalized characterization of the convex envelope of a function
RAIRO - Operations Research - Recherche Opérationnelle, Tome 36 (2002) no. 1, pp. 95-100.

We investigate the minima of functionals of the form

[a,b] g(u ˙(s))ds
where g is strictly convex. The admissible functions u:[a,b] are not necessarily convex and satisfy uf on [a,b], u(a)=f(a), u(b)=f(b), f is a fixed function on [a,b]. We show that the minimum is attained by f ¯, the convex envelope of f.

DOI : https://doi.org/10.1051/ro:2002007
Mots clés : convex envelope, optimization, strict convexity, cost function
@article{RO_2002__36_1_95_0,
     author = {Kadhi, Fethi},
     title = {Generalized characterization of the convex envelope of a function},
     journal = {RAIRO - Operations Research - Recherche Op\'erationnelle},
     pages = {95--100},
     publisher = {EDP-Sciences},
     volume = {36},
     number = {1},
     year = {2002},
     doi = {10.1051/ro:2002007},
     zbl = {1003.49016},
     mrnumber = {1920381},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ro:2002007/}
}
Kadhi, Fethi. Generalized characterization of the convex envelope of a function. RAIRO - Operations Research - Recherche Opérationnelle, Tome 36 (2002) no. 1, pp. 95-100. doi : 10.1051/ro:2002007. http://www.numdam.org/articles/10.1051/ro:2002007/

[1] J. Benoist and J.B. Hiriart-Urruty, What Is the Subdifferential of the Closed Convex Hull of a Function? SIAM J. Math. Anal. 27 (1994) 1661-1679. | MR 1416513 | Zbl 0876.49018

[2] H. Brezis, Analyse Fonctionnelle: Théorie et Applications. Masson, Paris, France (1983). | MR 697382 | Zbl 0511.46001

[3] B. Dacorogna, Introduction au Calcul des Variations. Presses Polytechniques et Universitaires Romandes, Lausanne (1992). | MR 1169677 | Zbl 0757.49001

[4] F. Kadhi and A. Trad, Characterization and Approximation of the Convex Envelope of a Function. J. Optim. Theory Appl. 110 (2001) 457-466. | MR 1846278 | Zbl 1007.90049

[5] T. Lachand-Robert and M.A. Peletier, Minimisation de Fonctionnelles dans un Ensemble de Fonctions Convexes. C. R. Acad. Sci. Paris Sér. I Math. 325 (1997) 851-855. | Zbl 0889.47035

[6] T. Rockafellar, Convex Analysis. Princeton University Press, Princeton, New Jersey (1970). | MR 274683 | Zbl 0193.18401

[7] W. Rudin, Real and Complex Analysis, Third Edition. McGraw Hill, New York (1987). | MR 924157 | Zbl 0925.00005