Let be a Lévy process started at , with Lévy measure . We consider the first passage time of to level , and the overshoot and the undershoot. We first prove that the Laplace transform of the random triple satisfies some kind of integral equation. Second, assuming that admits exponential moments, we show that converges in distribution as , where denotes a suitable renormalization of .
Keywords: Lévy processes, ruin problem, hitting time, overshoot, undershoot, asymptotic estimates, functional equation
@article{PS_2008__12__58_0, author = {Roynette, Bernard and Vallois, Pierre and Volpi, Agn\`es}, title = {Asymptotic behavior of the hitting time, overshoot and undershoot for some {L\'evy} processes}, journal = {ESAIM: Probability and Statistics}, pages = {58--93}, publisher = {EDP-Sciences}, volume = {12}, year = {2008}, doi = {10.1051/ps:2007034}, mrnumber = {2367994}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2007034/} }
TY - JOUR AU - Roynette, Bernard AU - Vallois, Pierre AU - Volpi, Agnès TI - Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes JO - ESAIM: Probability and Statistics PY - 2008 SP - 58 EP - 93 VL - 12 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2007034/ DO - 10.1051/ps:2007034 LA - en ID - PS_2008__12__58_0 ER -
%0 Journal Article %A Roynette, Bernard %A Vallois, Pierre %A Volpi, Agnès %T Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes %J ESAIM: Probability and Statistics %D 2008 %P 58-93 %V 12 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps:2007034/ %R 10.1051/ps:2007034 %G en %F PS_2008__12__58_0
Roynette, Bernard; Vallois, Pierre; Volpi, Agnès. Asymptotic behavior of the hitting time, overshoot and undershoot for some Lévy processes. ESAIM: Probability and Statistics, Volume 12 (2008), pp. 58-93. doi : 10.1051/ps:2007034. http://www.numdam.org/articles/10.1051/ps:2007034/
[1] Lévy processes, Cambridge Tracts in Mathematics, vol. 121. Cambridge University Press, Cambridge (1996). | MR | Zbl
,[2] Cramér's estimate for Lévy processes. Statist. Probab. Lett. 21 (1994) 363-365. | MR | Zbl
and ,[3] Collective risk theory: A survey of the theory from the point of view of the theory of stochastic processes. Skandia Insurance Company, Stockholm, (1955). Reprinted from the Jubilee Volume of Försäkringsaktiebolaget Skandia. | MR
,[4] On the mathematical Theory of Risk. Skandia Jubilee Volume, Stockholm (1930). | JFM
,[5] Hitting probabilities for spectrally positive Lévy processes. J. London Math. Soc. 44 (1991) 566-576. | MR | Zbl
,[6] Overshoots and undershoots of Lévy processes. Ann. Appl. Probab. 16 (2006) 91-106. | MR | Zbl
and ,[7] Stability of the overshoot for Lévy processes. Ann. Probab. 30 (2002) 188-212. | MR | Zbl
and .[8] Risk theory for the compound Poisson process that is perturbed by diffusion. Insurance Math. Econom. 10 (1991) 51-59. | MR | Zbl
and ,[9] Table of integrals, series, and products. Academic Press [Harcourt Brace Jovanovich Publishers], New York (1980). Corrected and enlarged edition edited by Alan Jeffrey, Incorporating the fourth edition edited by Yu. V. Geronimus [Yu. V. Geronimus] and M. Yu. Tseytlin [M. Yu. Tseĭtlin], Translated from Russian. | Zbl
and ,[10] On the rate of growth of the overshoot and the maximum partial sum. Adv. in Appl. Probab. 30 (1998) 181-196. | MR | Zbl
and ,[11] Stopped random walks, Applied Probability, vol. 5, A Series of the Applied Probability Trust. Springer-Verlag, New York, (1988). Limit theorems and applications. | MR | Zbl
,[12] Brownian motion and stochastic calculus, Graduate Texts in Mathematics, vol.113. Springer-Verlag, New York, second edition (1991). | MR | Zbl
and .[13] Introductory lectures on fluctuations of Lévy processes with applications. Universitext. Springer-Verlag, Berlin (2006). | MR | Zbl
,[14] Special functions and their applications. Dover Publications Inc., New York (1972). Revised edition, translated from the Russian and edited by Richard A. Silverman, Unabridged and corrected republication. | Zbl
,[15] Probability theory. II. Springer-Verlag, New York, fourth edition (1978). Graduate Texts in Mathematics, Vol. 46. | MR | Zbl
,[16] I- Approximerad Framställning av Sannolikhetsfunktionen. II- Aterförsäkering av Kollectivrisker. Almqvist and Wiksell, Uppsala (1903).
,[17] Stochastic processes for insurance and finance. Wiley Series in Probability and Statistics. John Wiley & Sons Ltd., Chichester (1999). | MR | Zbl
, , and ,[18] Lévy processes and infinitely divisible distributions, volume 68 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge, (1999). Translated from the 1990 Japanese original, Revised by the author. | MR | Zbl
,[19] The theory of functions of a complex variable. “Mir”, Moscow (1982). Translated from the Russian by George Yankovsky [G. Yankovskiĭ]. | Zbl
and ,[20] Processus associés à l'équation de diffusion rapide; Étude asymptotique du temps de ruine et de l'overshoot. Univ. Henri Poincaré, Nancy I, Vandoeuvre les Nancy (2003). Thèse.
,Cited by Sources: