In this paper we derive non asymptotic deviation bounds for
Keywords: deviation inequalities, functional inequalities, additive functionals
@article{PS_2008__12__12_0, author = {Cattiaux, Patrick and Guillin, Arnaud}, title = {Deviation bounds for additive functionals of {Markov} processes}, journal = {ESAIM: Probability and Statistics}, pages = {12--29}, publisher = {EDP-Sciences}, volume = {12}, year = {2008}, doi = {10.1051/ps:2007032}, mrnumber = {2367991}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2007032/} }
TY - JOUR AU - Cattiaux, Patrick AU - Guillin, Arnaud TI - Deviation bounds for additive functionals of Markov processes JO - ESAIM: Probability and Statistics PY - 2008 SP - 12 EP - 29 VL - 12 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2007032/ DO - 10.1051/ps:2007032 LA - en ID - PS_2008__12__12_0 ER -
%0 Journal Article %A Cattiaux, Patrick %A Guillin, Arnaud %T Deviation bounds for additive functionals of Markov processes %J ESAIM: Probability and Statistics %D 2008 %P 12-29 %V 12 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps:2007032/ %R 10.1051/ps:2007032 %G en %F PS_2008__12__12_0
Cattiaux, Patrick; Guillin, Arnaud. Deviation bounds for additive functionals of Markov processes. ESAIM: Probability and Statistics, Volume 12 (2008), pp. 12-29. doi : 10.1051/ps:2007032. http://www.numdam.org/articles/10.1051/ps:2007032/
[1] Uniform positivity improving property, Sobolev inequalities and spectral gaps. J. Funct. Anal. 158 (1998) 152-185. | MR | Zbl
,[2] L'hypercontractivité et son utilisation en théorie des semigroupes. In Lectures on Probability theory. École d'été de Probabilités de St-Flour 1992, Lect. Notes Math. 1581 (1994) 1-114. | MR | Zbl
,[3] Concentration for independent random variables with heavy tails. AMRX 2005 (2005) 39-60. | MR | Zbl
, and ,[4] Interpolated inequalities between exponential and Gaussian, Orlicz hypercontractivity and isoperimetry. Rev. Mat. Iber. 22 (2006) 993-1067. | MR | Zbl
, and ,[5] Isoperimetry between exponential and Gaussian. EJP 12 (2007) 1212-1237. | MR | Zbl
, and ,[6] Large deviations for quadratic functionals of gaussian processes. J. Theoret. Prob. 10 (1997) 307-332. | MR | Zbl
and ,[7] Weak logarithmic-Sobolev inequalities and entropic convergence. Prob. Theory Related Fields 139 (2007) 563-603. | MR | Zbl
, and ,[8] Heat kernels and spectral theory. Cambridge University Press (1989). | MR | Zbl
,[9] Large Deviations. Academic Press, London, Pure Appl. Math. 137 (1989). | MR | Zbl
and ,[10] Transportation cost information inequalities for random dynamical systems and diffusions. Ann. Prob. 334 (2002) 1025-1028. | Zbl
, and ,[11] Mixing, Properties and Examples. Springer-Verlag, Lect. Notes Statist. 85 (1994). | MR | Zbl
,[12] Weighted Sobolev-Poincaré inequalities and pointwise estimates for a class of degenerate elliptic equations. T.A.M.S. 327 (1991) 125-158. | MR | Zbl
,[13] Functional inequalities for uniformly integrable semigroups and applications to essential spectrums. Forum Math. 14 (2002) 293-313. | MR
and ,[14] Convex conjugates of integral functionals. Acta Math. Hungar. 93 (2001) 253-280. | MR | Zbl
,[15] Minimizers of energy functionals. Acta Math. Hungar. 93 (2001) 281-325. | MR | Zbl
,[16] Chernoff and Berry-Eessen inequalities for Markov processes. ESAIM Probab. Statist. 5 (2001) 183-201. | Numdam | MR | Zbl
,[17] Weighted Poincaré and Sobolev inequalities for vector fields satisfying Hörmander's condition and applications. Rev. Mat. Iber. 8 (1992) 367-439. | MR | Zbl
,[18] Théorie asymptotique des processus aléatoires faiblement dépendants. Springer-Verlag, Math. Appl. 31 (2000). | MR | Zbl
,[19] Integrals which are convex functionals. Pacific J. Math. 24 (1968) 525-539. | MR | Zbl
,[20] Integrals which are convex functionals II. Pacific J. Math. 39 (1971) 439-469. | MR | Zbl
,[21] Weak Poincaré inequalities and -convergence rates of Markov semigroups. J. Funct. Anal. 185 (2001) 564-603. | MR | Zbl
and ,[22] Une initiation aux inégalités de Sobolev logarithmiques. S.M.F., Paris (1999). | MR | Zbl
,[23] Functional inequalities for empty essential spectrum. J. Funct. Anal. 170 (2000) 219-245. | MR | Zbl
,[24] A deviation inequality for non-reversible Markov process. Ann. Inst. Henri Poincaré. Prob. Stat. 36 (2000) 435-445. | Numdam | MR | Zbl
,Cited by Sources: