We study strictly parabolic stochastic partial differential equations on , , driven by a gaussian noise white in time and coloured in space. Assuming that the coefficients of the differential operator are random, we give sufficient conditions on the correlation of the noise ensuring Hölder continuity for the trajectories of the solution of the equation. For self-adjoint operators with deterministic coefficients, the mild and weak formulation of the equation are related, deriving path properties of the solution to a parabolic Cauchy problem in evolution form.
Classification : 60H15, 60H25, 35R60
Mots clés : stochastic partial differential equations, mild and weak solutions, random noise
@article{PS_2006__10__380_0, author = {Ferrante, Marco and Sanz-Sol\'e, Marta}, title = {SPDEs with coloured noise : analytic and stochastic approaches}, journal = {ESAIM: Probability and Statistics}, pages = {380--405}, publisher = {EDP-Sciences}, volume = {10}, year = {2006}, doi = {10.1051/ps:2006016}, mrnumber = {2263072}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps:2006016/} }
TY - JOUR AU - Ferrante, Marco AU - Sanz-Solé, Marta TI - SPDEs with coloured noise : analytic and stochastic approaches JO - ESAIM: Probability and Statistics PY - 2006 DA - 2006/// SP - 380 EP - 405 VL - 10 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps:2006016/ UR - https://www.ams.org/mathscinet-getitem?mr=2263072 UR - https://doi.org/10.1051/ps:2006016 DO - 10.1051/ps:2006016 LA - en ID - PS_2006__10__380_0 ER -
Ferrante, Marco; Sanz-Solé, Marta. SPDEs with coloured noise : analytic and stochastic approaches. ESAIM: Probability and Statistics, Tome 10 (2006), pp. 380-405. doi : 10.1051/ps:2006016. http://www.numdam.org/articles/10.1051/ps:2006016/
[1] Handbook of mathematical functions. National Bureau of Standards (1964).
and ,[2] Sobolev spaces. Academic Press, New York-London (1975). | MR 450957 | Zbl 0314.46030
,[3] Stochastic heat equation with random coefficients. Probab. Theory Related Fields 115 (1999) 41-94. | Zbl 0939.60065
, and ,[4] The stochastic wave equation in two spatial dimensions. Ann. Probab. 26 (1998) 187-212. | Zbl 0938.60046
and ,[5] Extending the martingale measure stochastic integral with applications to spatially homogeneous s.p.d.e.'s. Electron. J. Probab. 4 (1999) 1-29. | EuDML 119958 | Zbl 0922.60056
,[6] Stochastic Equations in Infinite Dimensions, 2nd Edition. Cambridge University Press (1998). | MR 1207136 | Zbl 0761.60052
and ,[7] Distributions and Fourier transforms. Academic Press, New York (1969). | Zbl 0188.18102
,[8] Parabolic Boundary Value Problems. Birkhäuser Verlag, Basel (1998). | MR 1632789 | Zbl 0893.35001
and ,[9] Partial differential equations of parabolic type. Prentice-Hall, Inc., Englewood Cliffs, N.J. (1964). | MR 181836 | Zbl 0144.34903
,[10] Generalized functions. Vol. 4: Applications of harmonic analysis. Academic Press, New York (1964). | Zbl 0136.11201
and ,[11] Integral operators in spaces of summable functions. Noordhoff International Publishing, Leyden (1976). | MR 385645 | Zbl 0312.47041
, , and ,[12] Theorems and problems in functional analysis. Springer-Verlag, New York-Berlin (1982). | MR 671088 | Zbl 0486.46002
and ,[13] Stochastic evolution systems. Russian Math. Surveys 37 (1982) 81-105. | Zbl 0518.60072
and ,[14] On -theory of stochastic partial differential equations in the whole space. SIAM J. Math. Anal. 27 (1996) 313-340. | Zbl 0846.60061
,[15] An analytic approach to SPDEs, in Stochastic partial differential equations: six perspectives, Math. Surveys Monogr. 64, American Mathematical Society, Providence (1999) 185-242. | Zbl 0933.60073
,[16] A Sobolev space theory of SPDEs with constant coefficients on a half line. SIAM J. Math. Anal. 30 (1998) 298-325. | Zbl 0928.60042
and ,[17] Linear and Quasilinear Equations of Parabolic Type. Translations of Mathematical Monographs 23, American Mathematical Society (1968). | Zbl 0174.15403
, and ,[18] Hyperbolic stochastic partial differential equations driven by boundary noises. Thèse 2452, Lausanne, EPFL (2001).
,[19] On the Cauchy problem for parabolic SPDEs in Hölder classes. Ann. Probab. 28 (2000) 74-103. | Zbl 1044.60050
,[20] Stochastic partial differential equations and filtering of diffusion processes. Stochastics 3 (1979) 127-167. | Zbl 0424.60067
,[21] Stochastic evolution equations. Linear theory and applications to non-linear filtering. Kluwer (1990). | Zbl 0724.60070
,[22] Théorie des distributions. Hermann, Paris (1966). | MR 209834 | Zbl 0149.09501
,[23] Path properties of a class of Gaussian processes with applications to spde's. Canadian Mathematical Society Conference Proceedings 28 (2000) 303-316. | Zbl 0970.60057
and ,[24] Hölder Continuity for the stochastic heat equation with spatially correlated noise, in Progress in Probability 52, Birkhäuser Verlag (2002) 259-268.
and ,[25] Equivalence and Hölder-Sobolev regularity of solutions for a class of non-autonomous stochastic partial differential equations. Ann. Inst. H. Poincaré Probab. Statist. 39 (2003) 703-742. | EuDML 77778 | Numdam | Zbl 1026.60080
and ,[26] Partial differential operators of elliptic type. American Mathematical Society, Providence (1992). | MR 1168472 | Zbl 0757.35015
,[27] Theory of function spaces. II. Monographs in Mathematics 84, Birkhäuser Verlag, Basel (1992). | MR 1163193 | Zbl 0763.46025
,[28] An Introduction to Stochastic Partial Differential Equations, in École d'été de Probabilités de Saint-Flour XIV (1984). Lect. Notes Math. 1180 (1986) 265-439. | Zbl 0608.60060
,Cité par Sources :