Preservation of log-concavity on summation
ESAIM: Probability and Statistics, Tome 10 (2006), pp. 206-215.

We extend Hoggar's theorem that the sum of two independent discrete-valued log-concave random variables is itself log-concave. We introduce conditions under which the result still holds for dependent variables. We argue that these conditions are natural by giving some applications. Firstly, we use our main theorem to give simple proofs of the log-concavity of the Stirling numbers of the second kind and of the Eulerian numbers. Secondly, we prove results concerning the log-concavity of the sum of independent (not necessarily log-concave) random variables.

DOI : https://doi.org/10.1051/ps:2006008
Classification : 60E15,  60C05,  11B75
Mots clés : log-concavity, convolution, dependent random variables, Stirling numbers, eulerian numbers
@article{PS_2006__10__206_0,
     author = {Johnson, Oliver and Goldschmidt, Christina},
     title = {Preservation of log-concavity on summation},
     journal = {ESAIM: Probability and Statistics},
     pages = {206--215},
     publisher = {EDP-Sciences},
     volume = {10},
     year = {2006},
     doi = {10.1051/ps:2006008},
     mrnumber = {2219340},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps:2006008/}
}
TY  - JOUR
AU  - Johnson, Oliver
AU  - Goldschmidt, Christina
TI  - Preservation of log-concavity on summation
JO  - ESAIM: Probability and Statistics
PY  - 2006
DA  - 2006///
SP  - 206
EP  - 215
VL  - 10
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps:2006008/
UR  - https://www.ams.org/mathscinet-getitem?mr=2219340
UR  - https://doi.org/10.1051/ps:2006008
DO  - 10.1051/ps:2006008
LA  - en
ID  - PS_2006__10__206_0
ER  - 
Johnson, Oliver; Goldschmidt, Christina. Preservation of log-concavity on summation. ESAIM: Probability and Statistics, Tome 10 (2006), pp. 206-215. doi : 10.1051/ps:2006008. http://www.numdam.org/articles/10.1051/ps:2006008/

[1] T. Bergstrom and M. Bagnoli, Log-concave probability and its applications. Econom. Theory 26 (2005) 445-469. | Zbl 1077.60012

[2] B. Biais, D. Martimort and J.-C. Rochet, Competing mechanisms in a common value environment. Econometrica 68 (2000) 799-837. | Zbl 1055.91538

[3] M. Bóna and R. Ehrenborg, A combinatorial proof of the log-concavity of the numbers of permutations with k runs. J. Combin. Theory Ser. A 90 (2000) 293-303. | Zbl 0951.05002

[4] F. Brenti, Unimodal, log-concave and Pólya frequency sequences in combinatorics. Mem. Amer. Math. Soc. 81 (1989) viii+106. | MR 963833 | Zbl 0697.05011

[5] F. Brenti, Expansions of chromatic polynomials and log-concavity. Trans. Amer. Math. Soc. 332 (1992) 729-756. | Zbl 0757.05052

[6] F. Brenti, Log-concave and unimodal sequences in algebra, combinatorics, and geometry: an update in Jerusalem combinatorics '93, Amer. Math. Soc., Providence, RI, Contemp. Math. 178 (1994) 71-89. | Zbl 0813.05007

[7] H. Davenport and G. Pólya, On the product of two power series. Canadian J. Math. 1 (1949) 1-5. | Zbl 0037.32505

[8] V. Gasharov, On the Neggers-Stanley conjecture and the Eulerian polynomials. J. Combin. Theory Ser. A 82 (1998) 134-146. | Zbl 0911.05005

[9] S.G. Hoggar, Chromatic polynomials and logarithmic concavity. J. Combin. Theory Ser. B 16 (1974) 248-254. | Zbl 0268.05104

[10] K. Joag-Dev and F. Proschan, Negative association of random variables with applications. Ann. Statist. 11 (1983) 286-295. | Zbl 0508.62041

[11] E.H. Lieb, Concavity properties and a generating function for Stirling numbers. J. Combin. Theory 5 (1968) 203-206. | Zbl 0164.33002

[12] E.J. Miravete, Preserving log-concavity under convolution: Comment. Econometrica 70 (2002) 1253-1254.

[13] C.P. Niculescu, A new look at Newton's inequalities. JIPAM. J. Inequal. Pure Appl. Math. 1 (2000) Issue 2, Article 17; see also http://jipam.vu.edu.au/. | Zbl 0972.26010

[14] R.C. Read, An introduction to chromatic polynomials. J. Combin. Theory 4 (1968) 52-71. | Zbl 0173.26203

[15] B.E. Sagan, Inductive and injective proofs of log concavity results. Discrete Math. 68 (1988) 281-292. | Zbl 0658.05003

[16] B.E. Sagan, Inductive proofs of q-log concavity. Discrete Math. 99 (1992) 289-306. | Zbl 0764.05096

[17] R.P. Stanley, Log-concave and unimodal sequences in algebra, combinatorics, and geometry, in Graph theory and its applications: East and West (Jinan, 1986), Ann. New York Acad. Sci., New York Acad. Sci., New York 576 (1989) 500-535. | Zbl 0792.05008

[18] Y. Wang, Linear transformations preserving log-concavity. Linear Algebra Appl. 359 (2003) 161-167. | Zbl 1015.15002

[19] Y. Wang and Y.-N. Yeh, Log-concavity and LC-positivity. Available at arXiv:math.CO/0504164 (2005). To appear in J. Combin. Theory Ser A. | MR 2293087 | Zbl 1109.11019

[20] Y. Wang and Y.-N. Yeh, Polynomials with real zeros and Pólya frequency sequences. J. Combin. Theory Ser. A 109 (2005) 63-74. | Zbl 1057.05007

[21] D.J.A. Welsh, Matroid theory, L.M.S. Monographs, No. 8. Academic Press, London (1976). | MR 427112 | Zbl 0343.05002

[22] H.S. Wilf, Generatingfunctionology. Academic Press Inc., Boston, MA, second edition (1994). | MR 1277813 | Zbl 0831.05001

Cité par Sources :