Detecting abrupt changes in random fields
ESAIM: Probability and Statistics, Tome 6 (2002), pp. 189-209.

This paper is devoted to the study of some asymptotic properties of a M-estimator in a framework of detection of abrupt changes in random field’s distribution. This class of problems includes e.g. recovery of sets. It involves various techniques, including M-estimation method, concentration inequalities, maximal inequalities for dependent random variables and φ-mixing. Penalization of the criterion function when the size of the true model is unknown is performed. All the results apply under mild, discussed assumptions. Simple examples are provided.

DOI : https://doi.org/10.1051/ps:2002011
Classification : 60E15,  62C99,  62F12,  62G20,  62M40
Mots clés : detection of change-points, M-estimation, penalized M-estimation, concentration inequalities, maximal inequalities, mixing
@article{PS_2002__6__189_0,
     author = {Chambaz, Antoine},
     title = {Detecting abrupt changes in random fields},
     journal = {ESAIM: Probability and Statistics},
     pages = {189--209},
     publisher = {EDP-Sciences},
     volume = {6},
     year = {2002},
     doi = {10.1051/ps:2002011},
     mrnumber = {1943147},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ps:2002011/}
}
TY  - JOUR
AU  - Chambaz, Antoine
TI  - Detecting abrupt changes in random fields
JO  - ESAIM: Probability and Statistics
PY  - 2002
DA  - 2002///
SP  - 189
EP  - 209
VL  - 6
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ps:2002011/
UR  - https://www.ams.org/mathscinet-getitem?mr=1943147
UR  - https://doi.org/10.1051/ps:2002011
DO  - 10.1051/ps:2002011
LA  - en
ID  - PS_2002__6__189_0
ER  - 
Chambaz, Antoine. Detecting abrupt changes in random fields. ESAIM: Probability and Statistics, Tome 6 (2002), pp. 189-209. doi : 10.1051/ps:2002011. http://www.numdam.org/articles/10.1051/ps:2002011/

[1] H. Akaike, A new look at the statistical model identification. IEEE Trans. Automat. Control AC-19 (1974) 716-723. System identification and time-series analysis. | MR 423716 | Zbl 0314.62039

[2] A. Antoniadis, I. Gijbels and B. Macgibbon, Non-parametric estimation for the location of a change-point in an otherwise smooth hazard function under random censoring. Scand. J. Statist. 27 (2000) 501-519. | MR 1795777 | Zbl 0977.62034

[3] Z.D. Bai, C.R. Rao and Y. Wu, Model selection with data-oriented penalty. J. Statist. Plann. Inference 77 (1999) 103-117. | MR 1677811 | Zbl 0926.62045

[4] A. Barron, L. Birgé and P Massart, Risk bounds for model selection via penalization. Probab. Theory Related Fields 113 (1999) 301-413. | MR 1679028 | Zbl 0946.62036

[5] M. Basseville and I.V. Nikiforov, Detection of abrupt changes: Theory and application. Prentice Hall Inc. (1993). | MR 1210954

[6] B.E. Brodsky and B.S. Darkhovsky, Nonparametric methods in change-point problems. Kluwer Academic Publishers Group (1993). | MR 1228205 | Zbl 0779.62031

[7] E. Carlstein, H.-G. Müller and D. Siegmund, Change-point problems. Institute of Mathematical Statistics, Hayward, CA (1994). Papers from the AMS-IMS-SIAM Summer Research Conference held at Mt. Holyoke College, South Hadley, MA July 11-16, 1992. | MR 1477909

[8] D. Dacunha-Castelle and E. Gassiat, The estimation of the order of a mixture model. Bernoulli 3 (1997) 279-299. | Zbl 0889.62012

[9] J. Dedecker, Exponential inequalities and functional central limit theorems for random fields. ESAIM P&S 5 (2001) 77. | Numdam | MR 1875665 | Zbl 1003.60033

[10] P. Doukhan, Mixing. Springer-Verlag, New York (1994). Properties and examples. | MR 1312160 | Zbl 0801.60027

[11] M. Lavielle, On the use of penalized contrasts for solving inverse problems. Application to the DDC (Detection of Divers Changes) problem (submitted).

[12] M. Lavielle, Detection of multiple changes in a sequence of dependent variables. Stochastic Process. Appl. 83 (1999) 79-102. | MR 1705601 | Zbl 0991.62014

[13] M. Lavielle and E. Lebarbier, An application of MCMC methods for the multiple change-points problem. Signal Process. 81 (2001) 39-53. | Zbl 1098.94557

[14] M. Lavielle and C. Ludeña, The multiple change-points problem for the spectral distribution. Bernoulli 6 (2000) 845-869. | MR 1791905 | Zbl 0998.62077

[15] M. Lavielle and E. Moulines, Least-squares estimation of an unknown number of shifts in a time series. J. Time Ser. Anal. 21 (2000) 33-59. | MR 1766173 | Zbl 0974.62070

[16] G. Lugosi, Lectures on statistical learning theory. Presented at the Garchy Seminar on Mathematical Statistics and Applications, available at http://www.econ.upf.es/~lugosi (2000).

[17] E. Mammen and A.B. Tsybakov, Asymptotical minimax recovery of sets with smooth boundaries. Ann. Statist. 23 (1995) 502-524. | MR 1332579 | Zbl 0834.62038

[18] P. Massart, Some applications of concentration inequalities to statistics. Ann. Fac. Sci. Toulouse Math. (6) 9 (2000) 245-303. | Numdam | MR 1813803 | Zbl 0986.62002

[19] F. Móricz, A general moment inequality for the maximum of the rectangular partial sums of multiple series. Acta Math. Hungar. 41 (1983) 337-346. | MR 703745 | Zbl 0521.60017

[20] F.A. Móricz, R.J. Serfling and W.F. Stout, Moment and probability bounds with quasisuperadditive structure for the maximum partial sum. Ann. Probab. 10 (1982) 1032-1040. | MR 672303 | Zbl 0499.60052

[21] V.V. Petrov, Limit theorems of probability theory. The Clarendon Press Oxford University Press, New York (1995). Sequences of independent random variables, Oxford Science Publications. | MR 1353441 | Zbl 0826.60001

[22] E. Rio, Théorie asymptotique des processus aléatoires faiblement dépendants. Springer (2000). | MR 2117923 | Zbl 0944.60008

[23] G. Schwarz, Estimating the dimension of a model. Ann. Statist. 6 (1978) 461-464. | MR 468014 | Zbl 0379.62005

[24] R.J. Serfling, Contributions to central limit theory for dependent variables. Ann. Math. Statist. 39 (1968) 1158-1175. | MR 228053 | Zbl 0176.48004

[25] M. Talagrand, New concentration inequalities in product spaces. Invent. Math. 126 (1996) 505-563. | MR 1419006 | Zbl 0893.60001

[26] A.W. Van Der Vaart, Asymptotic statistics. Cambridge University Press (1998). | MR 1652247 | Zbl 0910.62001

[27] A.W. Van Der Vaart and J.A. Wellner, Weak convergence and empirical processes. Springer-Verlag, New York (1996). With applications to statistics. | MR 1385671 | Zbl 0862.60002

[28] V.N. Vapnik, Statistical learning theory. John Wiley & Sons Inc., New York (1998). | MR 1641250 | Zbl 0935.62007

[29] Y.-C. Yao, Estimating the number of change-points via Schwarz's criterion. Statist. Probab. Lett. 6 (1988) 181-189. | Zbl 0642.62016

Cité par Sources :