Compact convex sets of the plane and probability theory
ESAIM: Probability and Statistics, Tome 18 (2014) , pp. 854-880.

The Gauss-Minkowski correspondence in ℝ2 states the existence of a homeomorphism between the probability measures μ on [0,2π] such that ${\int }_{0}^{2\pi }{\mathrm{e}}^{ix}\mathrm{d}\mu \left(x\right)=0$ ∫ 0 2 π e ix d μ ( x ) = 0 and the compact convex sets (CCS) of the plane with perimeter 1. In this article, we bring out explicit formulas relating the border of a CCS to its probability measure. As a consequence, we show that some natural operations on CCS - for example, the Minkowski sum - have natural translations in terms of probability measure operations, and reciprocally, the convolution of measures translates into a new notion of convolution of CCS. Additionally, we give a proof that a polygonal curve associated with a sample of n random variables (satisfying ${\int }_{0}^{2\pi }{\mathrm{e}}^{ix}\mathrm{d}\mu \left(x\right)=0$ ∫ 0 2 π e ix d μ ( x ) = 0 ) converges to a CCS associated with μ at speed √n, a result much similar to the convergence of the empirical process in statistics. Finally, we employ this correspondence to present models of smooth random CCS and simulations.

DOI : https://doi.org/10.1051/ps/2014008
Classification : 52A10,  60B05,  60D05,  60F17,  60G99
Mots clés : random convex sets, symmetrisation, weak convergence, Minkowski sum
@article{PS_2014__18__854_0,
author = {Marckert, Jean-Fran\c{c}ois and Renault, David},
title = {Compact convex sets of the plane and probability theory},
journal = {ESAIM: Probability and Statistics},
pages = {854--880},
publisher = {EDP-Sciences},
volume = {18},
year = {2014},
doi = {10.1051/ps/2014008},
language = {en},
url = {http://www.numdam.org/articles/10.1051/ps/2014008/}
}
Marckert, Jean-François; Renault, David. Compact convex sets of the plane and probability theory. ESAIM: Probability and Statistics, Tome 18 (2014) , pp. 854-880. doi : 10.1051/ps/2014008. http://www.numdam.org/articles/10.1051/ps/2014008/

 I. Bárány, Sylvester's question: The probability that n points are in convex position. Ann. Probab. 27 (1999) 2020-2034. | MR 1742899 | Zbl 0959.60006

 I. Bárány, Random polytopes, convex bodies and approximation, in Stochastic Geometry, Vol. 1892 of Lect. Notes Math. Springer Berlin/Heidelberg (2007) 77-118. | MR 2327291 | Zbl 1123.60006

 I. Bárány and A.M. Vershik, On the number of convex lattice polytopes. Geom. Func. Anal. 2 (1992) 381-393. | MR 1191566 | Zbl 0772.52010

 P. Billingsley, Convergence of probability measures. Wiley Series in Probability and Statistics: Probability and Statistics, 2nd edition. A Wiley-Interscience Publication. John Wiley & Sons Inc., New York (1999). | MR 1700749 | Zbl 0172.21201

 O. Bodini, Ph. Duchon, A. Jacquot and L. Mutafchiev, Asymptotic analysis and random sampling of digitally convex polyominoes. In Proc. of the 17th IAPR international conference on Discrete Geometry for Computer Imagery, DGCI'13. Springer-Verlag, Berlin, Heidelberg (2013) 95-106. | MR 3155272

 L.V. Bogachev and S.M. Zarbaliev, Universality of the limit shape of convex lattice polygonal lines. Ann. Probab. 39 (1992) 2271-2317. | MR 2932669 | Zbl 1242.52007

 C. Buchta, On the boundray structure of the convex hull of random points. Adv. Geom. (2012). Available at: http://www.uni-salzburg.at/pls/portal/docs/1/1739190.PDF. | MR 2911166 | Zbl 1247.52005

 H. Busemann, Convex Surfaces. Interscience. New York (1958). | MR 105155 | Zbl 0196.55101

 P. Calka, Precise formulae for the distributions of the principal geometric characteristics of the typical cells of a two-dimensional poisson-voronoi tessellation and a poisson line process. Adv. Appl. Probab. 35 (2003) 551-562. Available at http://www.univ-rouen.fr/LMRS/Persopage/Calka/publications.html. | MR 1990603 | Zbl 1045.60005

 R.M. Dudley, Real Analysis and Probability. Cambridge Studies in Advanced Mathematics. Cambridge University Press (2002). | MR 1932358 | Zbl 1023.60001

 W. Feller, An introduction to probability theory and its applications. Vol. II. 2nd edition. John Wiley & Sons Inc., New York (1971). | MR 270403 | Zbl 0138.10207

 M.A. Hurwitz, Sur le problème des isopérimètres. C. R. Acad. Sci. Paris 132 (1901) 401-403. | JFM 32.0386.01

 M.A. Hurwitz, Sur quelques applications géométriques des séries de Fourier. Annales Scientifiques de l'École Normale supérieure, 19 (1902) 357-408. Available at http://archive.numdam.org/article/ASENS˙1902˙3˙19˙˙357˙0.pdf. | JFM 33.0599.02 | Numdam

 B. Klartag, On John-type ellipsoids, in Geometric aspects of functional analysis, vol. 1850 of Lect. Notes Math. Springer, Berlin (2004) 149-158. | MR 2087157 | Zbl 1067.52004

 D.E. Knuth, Axioms and hulls. Vol. 606 of Lect. Notes Comput. Sci. Springer-Verlag, Berlin (1992). Available at: http://www-cs-faculty.stanford.edu/˜uno/aah.html. | MR 1226891 | Zbl 0777.68012

 P. Lévy, L'addition des variables aléatoires définies sur un circonférence. Bull. Soc. Math. France 67 (1939) 1-41. Available at http://archive.numdam.org/article/BSMF˙1939˙˙67˙˙1˙0.pdf. | JFM 65.1346.01 | Numdam | Zbl 0023.05801

 J.-F. Marckert, Probability that n random points in a disk are in convex position. Available at http://arxiv.org/abs/1402.3512 (2014).

 M. Moszyńska, Selected Topics in Convex Geometry. Birkhäuser (2006). | Zbl 1093.52001

 V.V. Petrov, Sums of independent random variables. Translated from the Russian by A.A. Brown. Band 82, Ergebnisse der Mathematik und ihrer Grenzgebiete. Springer-Verlag, New York (1975). | MR 388499 | Zbl 0322.60042

 A.V. Pogorelov, Extrinsic geometry of convex surfaces. American Mathematical Society, Providence, R.I. (1973). Translated from the Russian by Israel Program for Scientific Translations, in vol. 35 Translations of Mathematical Monographs. | MR 346714 | Zbl 0311.53067

 G. Pólya, Isoperimetric Inequalities in Mathematical Physics. Ann. Math. Stud. Kraus (1965). | Zbl 0044.38301

 W. Rudin, Real and Complex Analysis, 3rd edn. McGraw-Hill International Editions (1987). | MR 924157 | Zbl 0278.26001

 R. Schneider, Convex Bodies: The Brunn−Minkowski Theory. Cambridge University Press (1993). | MR 1216521 | Zbl 1287.52001

 Ya.G. Sinai, Probabilistic approach to the analysis of statistics for convex polygonal lines. Functional Anal. Appl. 28 (1994) 1. | MR 1283251 | Zbl 0832.60099

 J.J. Sylvester, On a special class of questions on the theory of probabilities. Birmingham British Assoc. Rept. (1865) 8-9.

 G. Szegö, Orthogonal polynomials. Colloquium Publications, 4th edition. American Mathematical Society (1939). | JFM 65.0278.03

 P. Valtr, Probability that n random points are in convex position. Discr. Comput. Geom. 13 (1995) 637-643. | MR 1318803 | Zbl 0820.60007

 P. Valtr, The probability that n random points in a triangle are in convex position. Combinatorica 16 (1996) 567-573. | MR 1433643 | Zbl 0881.60010

 A. Vershik and O. Zeitouni, large deviations in the geometry of convex lattice polygons. Israel J. Math. 109 (1999) 13-27. | MR 1679585 | Zbl 0945.60022

 R.J.G. Wilms, Fractional parts of random variables. Limit theorems and infinite divisibility, Dissertation. Technische Universiteit Eindhoven, Eindhoven (1994). | MR 1296668 | Zbl 0804.60024