We derive a central limit theorem for triangular arrays of possibly nonstationary random variables satisfying a condition of weak dependence in the sense of Doukhan and Louhichi [Stoch. Proc. Appl. 84 (1999) 313-342]. The proof uses a new variant of the Lindeberg method: the behavior of the partial sums is compared to that of partial sums of dependent Gaussian random variables. We also discuss a few applications in statistics which show that our central limit theorem is tailor-made for statistics of different type.
Keywords: central limit theorem, Lindeberg method, weak dependence, bootstrap
@article{PS_2013__17__120_0, author = {Neumann, Michael H.}, title = {A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics}, journal = {ESAIM: Probability and Statistics}, pages = {120--134}, publisher = {EDP-Sciences}, volume = {17}, year = {2013}, doi = {10.1051/ps/2011144}, mrnumber = {3021312}, zbl = {1291.60047}, language = {en}, url = {http://www.numdam.org/articles/10.1051/ps/2011144/} }
TY - JOUR AU - Neumann, Michael H. TI - A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics JO - ESAIM: Probability and Statistics PY - 2013 SP - 120 EP - 134 VL - 17 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/ps/2011144/ DO - 10.1051/ps/2011144 LA - en ID - PS_2013__17__120_0 ER -
%0 Journal Article %A Neumann, Michael H. %T A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics %J ESAIM: Probability and Statistics %D 2013 %P 120-134 %V 17 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/ps/2011144/ %R 10.1051/ps/2011144 %G en %F PS_2013__17__120_0
Neumann, Michael H. A central limit theorem for triangular arrays of weakly dependent random variables, with applications in statistics. ESAIM: Probability and Statistics, Volume 17 (2013), pp. 120-134. doi : 10.1051/ps/2011144. http://www.numdam.org/articles/10.1051/ps/2011144/
[1] Non-strong mixing autoregressive processes, J. Appl. Probab. 21 (1984) 930-934. | MR | Zbl
,[2] Dependent Lindeberg central limit theorem and some applications. ESAIM : PS 12 (2008) 154-172. | Numdam | MR | Zbl
, , and ,[3] A new mixing notion and functional central limit theorems for a sieve bootstrap in time series. Bernoulli 5 (1999) 413-446. | MR | Zbl
and ,[4] The Lindeberg-Lévy theorem for martingales. Proc. Amer. Math. Soc. 12 (1961) 788-792. | MR | Zbl
,[5] Convergence of Probability Measures. Wiley, New York (1968). | MR | Zbl
,[6] A triangular central limit theorem under a new weak dependence condition. Stat. Probab. Lett. 47 (2000) 61-68. | MR | Zbl
and ,[7] Fitting time series models to nonstationary processes. Ann. Stat. 25 (1997) 1-37. | MR | Zbl
,[8] Local inference for locally stationary time series based on the empirical spectral measure. J. Econ. 151 (2009) 101-112. | MR
,[9] A central limit theorem for stationary random fields. Probab. Theory Relat. Fields 110 (1998) 397-426. | MR | Zbl
,[10] Necessary and sufficient conditions for the conditional central limit theorem. Ann. Probab. 30 (2002) 1044-1081. | MR | Zbl
and ,[11] On the functional central limit theorem for stationary processes. Ann. Inst. Henri Poincaré Série B 36 (2000) 1-34. | Numdam | MR | Zbl
and ,[12] Weak Dependence : With Examples and Applications. Springer-Verlag. Lect. Notes Stat. 190 (2007). | MR | Zbl
, , , , and ,[13] Mixing : Properties and Examples. Springer-Verlag. Lect. Notes Stat. 85 (1994). | MR | Zbl
,[14] A new weak dependence condition and application to moment inequalities. Stoch. Proc. Appl. 84 (1999) 313-342. | MR | Zbl
and ,[15] Some limit theorems for stationary processes. Teor. Veroyatn. Primen. 7 (1962) 361-392 (in Russian). [English translation : Theory Probab. Appl. 7 (1962) 349-382]. | MR | Zbl
,[16] A central limit theorem for a class of dependent random variables. Teor. Veroyatnost. i Primenen. 8 (1963) 89-94 (in Russian). [English translation : Theor. Probab. Appl. 8 (1963) 83-89]. | MR | Zbl
,[17] A note on the central limit theorem for dependent random variables. Teor. Veroyatnost. i Primenen. 20 (1975) 134-140 (in Russian). [English translation : Theor. Probab. Appl. 20 (1975) 135-141]. | MR | Zbl
,[18] Eine neue Herleitung des Exponentialgesetzes in der Wahrscheinlichkeitsrechnung, Math. Zeitschr. 15 (1922) 211-225. | JFM | MR
,[19] Siegel's formula via Stein's identities. Statist. Probab. Lett. 21 (1994) 247-251. | MR | Zbl
,[20] Handbook of Matrices. Wiley, Chichester (1996). | MR | Zbl
,[21] Goodness-of-fit tests for Markovian time series models : Central limit theory and bootstrap approximations. Bernoulli 14 (2008) 14-46. | MR | Zbl
and ,[22] A test for stationarity. Manuscript (2011).
and ,[23] Wavelet thresholding in anisotropic function classes and application to adaptive estimation of evolutionary spectra. Ann. Statist. 25 (1997) 38-76. | MR | Zbl
and ,[24] About the Lindeberg method for strongly mixing sequences. ESAIM : PS 1 (1995) 35-61. | Numdam | MR | Zbl
,[25] A central limit theorem and a strong mixing condition. Proc. Natl. Acad. Sci. USA 42 (1956) 43-47. | MR | Zbl
,[26] Linear processes and bispectra. J. Appl. Probab. 17 (1980) 265-270. | MR | Zbl
,[27] Some limit theorems for random functions, Part I. Teor. Veroyatn. Primen. 4 (1959) 186-207 (in Russian). [English translation : Theory Probab. Appl. 4 (1959) 178-197]. | Zbl
and ,Cited by Sources: