The hp-version of the boundary element method with quasi-uniform meshes in three dimensions
ESAIM: Modélisation mathématique et analyse numérique, Volume 42 (2008) no. 5, pp. 821-849.

We prove an a priori error estimate for the hp-version of the boundary element method with hypersingular operators on piecewise plane open or closed surfaces. The underlying meshes are supposed to be quasi-uniform. The solutions of problems on polyhedral or piecewise plane open surfaces exhibit typical singularities which limit the convergence rate of the boundary element method. On closed surfaces, and for sufficiently smooth given data, the solution is H 1 -regular whereas, on open surfaces, edge singularities are strong enough to prevent the solution from being in H 1 . In this paper we cover both cases and, in particular, prove an a priori error estimate for the h-version with quasi-uniform meshes. For open surfaces we prove a convergence like O(h 1/2 p -1 ), h being the mesh size and p denoting the polynomial degree. This result had been conjectured previously.

DOI: 10.1051/m2an:2008025
Classification: 41A10, 65N15, 65N38
Keywords: $hp$-version with quasi-uniform meshes, boundary element method, singularities
@article{M2AN_2008__42_5_821_0,
     author = {Bespalov, Alexei and Heuer, Norbert},
     title = {The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {821--849},
     publisher = {EDP-Sciences},
     volume = {42},
     number = {5},
     year = {2008},
     doi = {10.1051/m2an:2008025},
     mrnumber = {2454624},
     zbl = {1154.41300},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2008025/}
}
TY  - JOUR
AU  - Bespalov, Alexei
AU  - Heuer, Norbert
TI  - The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2008
SP  - 821
EP  - 849
VL  - 42
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2008025/
DO  - 10.1051/m2an:2008025
LA  - en
ID  - M2AN_2008__42_5_821_0
ER  - 
%0 Journal Article
%A Bespalov, Alexei
%A Heuer, Norbert
%T The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2008
%P 821-849
%V 42
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2008025/
%R 10.1051/m2an:2008025
%G en
%F M2AN_2008__42_5_821_0
Bespalov, Alexei; Heuer, Norbert. The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions. ESAIM: Modélisation mathématique et analyse numérique, Volume 42 (2008) no. 5, pp. 821-849. doi : 10.1051/m2an:2008025. http://www.numdam.org/articles/10.1051/m2an:2008025/

[1] M. Ainsworth and L. Demkowicz, Explicit polynomial preserving trace liftings on a triangle. Math. Nachr. (to appear).

[2] M. Ainsworth and D. Kay, The approximation theory for the p-version finite element method and application to non-linear elliptic PDEs. Numer. Math. 82 (1999) 351-388. | MR | Zbl

[3] M. Ainsworth and K. Pinchedez, The hp-MITC finite element method for the Reissner-Mindlin plate problem. J. Comput. Appl. Math. 148 (2002) 429-462. | MR | Zbl

[4] M. Ainsworth, W. Mclean and T. Tran, The conditioning of boundary element equations on locally refined meshes and preconditioning by diagonal scaling. SIAM J. Numer. Anal. 36 (1999) 1901-1932. | MR | Zbl

[5] I. Babuška and B.Q. Guo, Optimal estimates for lower and upper bounds of approximation errors in the p-version of the finite element method in two dimensions. Numer. Math. 85 (2000) 219-255. | MR | Zbl

[6] I. Babuška and M. Suri, The h-p version of the finite element method with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 21 (1987) 199-238. | Numdam | MR | Zbl

[7] I. Babuška and M. Suri, The optimal convergence rate of the p-version of the finite element method. SIAM J. Numer. Anal. 24 (1987) 750-776. | MR | Zbl

[8] I. Babuška and M. Suri, The treatment of nonhomogeneous Dirichlet boundary conditions by the p-version of the finite element method. Numer. Math. 55 (1989) 97-121. | MR | Zbl

[9] I. Babuška, R.B. Kellogg and J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinement. Numer. Math. 33 (1979) 447-471. | MR | Zbl

[10] J. Bergh and J. Löfström, Interpolation Spaces, Grundlehren der mathematischen Wissenschaften 223. Springer-Verlag, Berlin (1976). | MR | Zbl

[11] A. Bespalov and N. Heuer, The p-version of the boundary element method for hypersingular operators on piecewise plane open surfaces. Numer. Math. 100 (2005) 185-209. | MR | Zbl

[12] A. Bespalov and N. Heuer, The p-version of the boundary element method for weakly singular operators on piecewise plane open surfaces. Numer. Math. 106 (2007) 69-97. | MR | Zbl

[13] P.G. Ciarlet, The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam (1978). | MR | Zbl

[14] M. Costabel, Boundary integral operators on Lipschitz domains: Elementary results. SIAM J. Math. Anal. 19 (1988) 613-626. | MR | Zbl

[15] L. Demkowicz, Polynomial exact sequences and projection-based interpolation with applications to Maxwell equations, in Mixed Finite Elements, Compatibility Conditions and Applications, D. Boffi and L. Gastaldi Eds., Lecture Notes in Mathematics 1939, Springer-Verlag (2008). | MR | Zbl

[16] L. Demkowicz and I. Babuška, p interpolation error estimates for edge finite elements of variable order in two dimensions. SIAM J. Numer. Anal. 41 (2003) 1195-1208. | MR | Zbl

[17] V.J. Ervin and N. Heuer, An adaptive boundary element method for the exterior Stokes problem in three dimensions. IMA J. Numer. Anal. 26 (2006) 297-325. | MR | Zbl

[18] P. Grisvard, Elliptic Problems in Nonsmooth Domains. Pitman Publishing Inc., Boston (1985). | MR | Zbl

[19] B.Q. Guo, Approximation theory for the p-version of the finite element method in three dimensions. Part 1: Approximabilities of singular functions in the framework of the Jacobi-weighted Besov and Sobolev spaces. SIAM J. Numer. Anal. 44 (2006) 246-269. | MR | Zbl

[20] B.Q. Guo and N. Heuer, The optimal rate of convergence of the p-version of the boundary element method in two dimensions. Numer. Math. 98 (2004) 499-538. | MR | Zbl

[21] B.Q. Guo and N. Heuer, The optimal convergence of the h-p version of the boundary element method with quasiuniform meshes for elliptic problems on polygonal domains. Adv. Comp. Math. 24 (2006) 353-374. | MR | Zbl

[22] N. Heuer and F. Leydecker, An extension theorem for polynomials on triangles. Calcolo 45 (2008) 69-85. | MR

[23] N. Heuer, M. Maischak and E.P. Stephan, Exponential convergence of the hp-version for the boundary element method on open surfaces. Numer. Math. 83 (1999) 641-666. | MR | Zbl

[24] J.-L. Lions and E. Magenes, Non-Homogeneous Boundary Value Problems and Applications I. Springer-Verlag, New York (1972). | Zbl

[25] P. Monk, On the p- and hp-extension of Nédélec’s curl-conforming elements. J. Comput. Appl. Math. 53 (1994) 117-137. | MR | Zbl

[26] J. Nečas, Les Méthodes Directes en Théorie des Équations Elliptiques. Academia, Prague (1967). | MR

[27] C. Schwab, p- and hp-Finite Element Methods. Clarendon Press, Oxford (1998). | MR | Zbl

[28] C. Schwab and M. Suri, The optimal p-version approximation of singularities on polyhedra in the boundary element method. SIAM J. Numer. Anal. 33 (1996) 729-759. | MR | Zbl

[29] E.P. Stephan, Boundary integral equations for screen problems in 3 . Integr. Equ. Oper. Theory 10 (1987) 257-263. | MR | Zbl

[30] E.P. Stephan, The h-p boundary element method for solving 2- and 3-dimensional problems. Comput. Methods Appl. Mech. Engrg. 133 (1996) 183-208. | MR | Zbl

[31] E.P. Stephan and M. Suri, The h-p version of the boundary element method on polygonal domains with quasiuniform meshes. RAIRO Modél. Math. Anal. Numér. 25 (1991) 783-807. | Numdam | MR | Zbl

[32] T. Von Petersdorff, Randwertprobleme der Elastizitätstheorie für Polyeder - Singularitäten und Approximation mit Randelementmethoden. Ph.D. thesis, Technische Hochschule Darmstadt, Germany (1989). | Zbl

[33] T. Von Petersdorff and E.P. Stephan, Regularity of mixed boundary value problems in 3 and boundary element methods on graded meshes. Math. Methods Appl. Sci. 12 (1990) 229-249. | MR | Zbl

Cited by Sources: