In this work we consider the dual-primal Discontinuous Petrov-Galerkin (DPG) method for the advection-diffusion model problem. Since in the DPG method both mixed internal variables are discontinuous, a static condensation procedure can be carried out, leading to a single-field nonconforming discretization scheme. For this latter formulation, we propose a flux-upwind stabilization technique to deal with the advection-dominated case. The resulting scheme is conservative and satisfies a discrete maximum principle under standard geometrical assumptions on the computational grid. A convergence analysis is developed, proving first-order accuracy of the method in a discrete -norm, and the numerical performance of the scheme is validated on benchmark problems with sharp internal and boundary layers.
Mots-clés : finite element methods, mixed and hybrid methods, discontinuous Galerkin and Petrov-Galerkin methods, nonconforming finite elements, stabilized finite elements, upwinding, advection-diffusion problems
@article{M2AN_2005__39_6_1087_0, author = {Causin, Paola and Sacco, Riccardo and Bottasso, Carlo L.}, title = {Flux-upwind stabilization of the discontinuous {Petrov-Galerkin} formulation with {Lagrange} multipliers for advection-diffusion problems}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {1087--1114}, publisher = {EDP-Sciences}, volume = {39}, number = {6}, year = {2005}, doi = {10.1051/m2an:2005050}, zbl = {1084.65105}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2005050/} }
TY - JOUR AU - Causin, Paola AU - Sacco, Riccardo AU - Bottasso, Carlo L. TI - Flux-upwind stabilization of the discontinuous Petrov-Galerkin formulation with Lagrange multipliers for advection-diffusion problems JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2005 SP - 1087 EP - 1114 VL - 39 IS - 6 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2005050/ DO - 10.1051/m2an:2005050 LA - en ID - M2AN_2005__39_6_1087_0 ER -
%0 Journal Article %A Causin, Paola %A Sacco, Riccardo %A Bottasso, Carlo L. %T Flux-upwind stabilization of the discontinuous Petrov-Galerkin formulation with Lagrange multipliers for advection-diffusion problems %J ESAIM: Modélisation mathématique et analyse numérique %D 2005 %P 1087-1114 %V 39 %N 6 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2005050/ %R 10.1051/m2an:2005050 %G en %F M2AN_2005__39_6_1087_0
Causin, Paola; Sacco, Riccardo; Bottasso, Carlo L. Flux-upwind stabilization of the discontinuous Petrov-Galerkin formulation with Lagrange multipliers for advection-diffusion problems. ESAIM: Modélisation mathématique et analyse numérique, Volume 39 (2005) no. 6, pp. 1087-1114. doi : 10.1051/m2an:2005050. http://www.numdam.org/articles/10.1051/m2an:2005050/
[1] Sobolev Spaces. Academic Press, New York (1975). | MR | Zbl
,[2] Mixed and nonconforming finite element methods: Implementation, postprocessing and error estimates. RAIRO Modél. Math. Anal. Numér. 19 (1985) 7-32. | Numdam | Zbl
and ,[3] Discontinuous Galerkin methods. Lect. Notes Comput. Sci. Engrg. 11, Springer-Verlag (2000) 89-101. | Zbl
, , and ,[4] Generalized finite element methods, their performance and their relation to mixed methods. SIAM J. Numer. Anal. 20 (1983) 510-536. | Zbl
and ,[5] Connection between finite volume and mixed finite element methods. RAIRO Modél. Math. Anal. Numér. 30 (1996) 445-465. | Numdam | Zbl
, and ,[6] The Discontinuous Petrov-Galerkin method for elliptic problems. Comput. Methods Appl. Mech. Engrg. 191 (2002) 3391-3409. | Zbl
, and ,[7] A multiscale formulation of the Discontinuous Petrov-Galerkin method for advective-diffusion problems. Comput. Methods Appl. Mech. Engrg. 194 (2005) 2819-2838. | Zbl
, and ,[8] Numerical simulation of semiconductor devices. Comput. Meths. Appl. Mech. Engrg. 75 (1989) 493-514. | Zbl
, and ,[9] Two-dimensional exponential fitting and applications to drift-diffusion models. SIAM J. Numer. Anal. 26 (1989) 1342-1355. | Zbl
, and ,[10] Mixed-hybrid Galerkin and Petrov-Galerkin finite element formulations in fluid mechanics. Ph.D. Thesis, Università degli Studi di Milano (2003).
,[11] Mixed-hybrid Galerkin and Petrov-Galerkin finite element formulations in continuum mechanics. in Proc. of the Fifth World Congress on Computational Mechanics (WCCM V), Vienna, Austria. H.A. Mang, F.G. Rammerstorfer and J. Eberhardsteiner Eds., Vienna University of Technology, Austria, http://wccm.tuwien.ac.at, July 7-12 (2002).
and ,[12] A Discontinuous Petrov-Galerkin method with Lagrangian multipliers for second order elliptic problems. SIAM J. Numer. Anal. 43 (2005) 280-302. | Zbl
and ,[13] The Finite Element Method for Elliptic Problems. North Holland, Amsterdam (1978). | MR | Zbl
,[14] A characterization of hybridized mixed methods for second order elliptic problems. SIAM Jour. Numer. Anal. 42 (2003) 283-301. | Zbl
and ,[15] Conforming and non-conforming finite element methods for solving the stationary Stokes equations. RAIRO, R-3 (1973) 33-76. | Numdam | Zbl
and ,[16] Godunov mixed methods for advection-diffusion equations in multidimensions. SIAM J. Numer. Anal. 30 (1993) 1315-1332. | Zbl
,[17] Upwind-mixed methods for transport equations. Comp. Geosc. 3 (1999) 93-110. | Zbl
and ,[18] A multilevel discontinuous galerkin method. Numer. Math. 95 (2003) 527-550. | Zbl
and ,[19] Décentrage et éléments finis mixtes pour les équations de diffusion-convection. Calcolo 2 (1984) 171-197. | Zbl
,[20] Analysis of Charge Transport. Springer-Verlag, Berlin, Heidelberg (1996). | MR | Zbl
,[21] Problèmes aux limites non homogènes et applications. Dunod (1968). | Zbl
and ,[22] An inexpensive method for the evaluation of the solution of the lower order Raviart-Thomas method. SIAM J. Numer. Anal. 22 (1985) 493-496. | Zbl
,[23] The Stationary Semiconductor Device Equations. Springer-Verlag, Wien, New York (1986). | MR
,[24] On some mixed finite element methods with numerical integration. SIAM J. Sci. Comput. 23 (2001) 245-270. | Zbl
, and ,[25] A new non-conforming Petrov-Galerkin finite element method with triangular elements for an advection-diffusion problem. IMA J. Numer. Anal. 14 (1994) 257-276. | Zbl
and ,[26] A Petrov-Galerkin finite element method for convection-dominated flows: an accurate upwinding technique satisfying the discrete maximum principle. Comput. Meth. Appl. Mech. Engrg. 50 (1985) 181-193. | Zbl
and ,[27] A technique of upstream type applied to a linear nonconforming finite element approximation of convective diffusion equations. RAIRO 3 (1984) 309-332. | Numdam | Zbl
and ,[28] Numerical Approximation of Partial Differential Equations. Springer-Verlag, New York, Berlin (1994). | MR | Zbl
and ,[29] Primal hybrid finite element methods for 2nd order elliptic equations. Math. Comp. 31-138 (1977) 391-413. | Zbl
and ,[30] Mixed and hybrid methods. In Finite Element Methods, Part I. P.G. Ciarlet and J.L. Lions (Eds.), North-Holland, Amsterdam 2 (1991). | MR | Zbl
and ,[31] Numerical methods for singularly perturbed differential equations. Springer-Verlag, Berlin, Heidelberg (1996). | MR | Zbl
, and ,[32] The patch test as a validation of a new finite element for the solution of convection-diffusion equations. Comp. Meth. Appl. Mech. Engrg. 124 (1995) 113-124. | Zbl
, and ,[33] Solution of the advection-diffusion equation using a combination of discontinuous and mixed finite elements. Inter. J. Numer. Methods Fluids 24 (1997) 593-613. | Zbl
, , and ,[34] Navier-Stokes Equations. North-Holland, Amsterdam (1977). | MR | Zbl
,Cited by Sources: