A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil
ESAIM: Modélisation mathématique et analyse numérique, Volume 39 (2005) no. 3, pp. 577-590.

The results of a workshop concerning the numerical simulation of the liquid flow around a hydrofoil in non-cavitating and cavitating conditions are presented. This workshop was part of the conference “Mathematical and Numerical aspects of Low Mach Number Flows” (2004) and was aimed to investigate the capabilities of different compressible flow solvers for the low Mach number regime and for flows in which incompressible and supersonic regions are simultaneously present. Different physical models of cavitating phenomena are also compared. The numerical results are validated against experimental data.

DOI: 10.1051/m2an:2005023
Classification: 65M99, 76B10, 76G25, 76T05
Keywords: low-Mach number, cavitating flows
@article{M2AN_2005__39_3_577_0,
     author = {Beux, Fran\c{c}ois and Salvetti, Maria-Vittoria and Ignatyev, Alexey and Li, Ding and Merkle, Charles and Sinibaldi, Edoardo},
     title = {A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {577--590},
     publisher = {EDP-Sciences},
     volume = {39},
     number = {3},
     year = {2005},
     doi = {10.1051/m2an:2005023},
     mrnumber = {2157151},
     zbl = {1130.76019},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an:2005023/}
}
TY  - JOUR
AU  - Beux, François
AU  - Salvetti, Maria-Vittoria
AU  - Ignatyev, Alexey
AU  - Li, Ding
AU  - Merkle, Charles
AU  - Sinibaldi, Edoardo
TI  - A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2005
SP  - 577
EP  - 590
VL  - 39
IS  - 3
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an:2005023/
DO  - 10.1051/m2an:2005023
LA  - en
ID  - M2AN_2005__39_3_577_0
ER  - 
%0 Journal Article
%A Beux, François
%A Salvetti, Maria-Vittoria
%A Ignatyev, Alexey
%A Li, Ding
%A Merkle, Charles
%A Sinibaldi, Edoardo
%T A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2005
%P 577-590
%V 39
%N 3
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an:2005023/
%R 10.1051/m2an:2005023
%G en
%F M2AN_2005__39_3_577_0
Beux, François; Salvetti, Maria-Vittoria; Ignatyev, Alexey; Li, Ding; Merkle, Charles; Sinibaldi, Edoardo. A numerical study of non-cavitating and cavitating liquid flow around a hydrofoil. ESAIM: Modélisation mathématique et analyse numérique, Volume 39 (2005) no. 3, pp. 577-590. doi : 10.1051/m2an:2005023. http://www.numdam.org/articles/10.1051/m2an:2005023/

[1] A. Baston, M. Lucchesini, L. Manfriani, L. Polito and G. Lombardi, Evaluation of pressure distributions on an aircraft by two different panel methods and comparison with experimental measurements, in 15th Int. Council of the Aeronautical Sciences Congress, London (1986) 618-628.

[2] L. D'Agostino, E. Rapposelli, C. Pascarella and A. Ciucci, A Modified Bubbly Isenthalpic Model for Numerical Simulation of Cavitating Flows, in 37th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Salt Lake City, UT, USA, July 8-11 (2001).

[3] M. Deshpande, J. Feng and C. Merkle, Navier-Stokes analysis of 2-D cavity flows. ASME Cavitation and Multiphase Flow Forum, FED-153 (1993) 149-155.

[4] P. Glaister, A Riemann Solver for barotropic flow. J. Comput. Phys. 93 (1991) 477-480. | Zbl

[5] H. Guillard and C. Viozat, On the behaviour of upwind schemes in the low Mach number limit. Comput. Fluids 28 (1999) 63-86. | Zbl

[6] G. Jiang and C. Shu, Efficient implementation of weighted ENO schemes. J. Comput. Phys. 126 (1996) 202-228. | Zbl

[7] D. Li and C. Merkle, Application of a general structured-unstructured solver to flows of arbitrary fluids, in First International Conference on Computational Fluid Dynamics, Kyoto, Japan, July 10-14 (2000).

[8] D. Li, G. Xia and C. Merkle, Analysis of real fluid flows in converging diverging nozzles. AIAA Paper 2003-4132 (2003), submitted.

[9] D. Li, S. Venkateswaran, K. Fakhari and C. Merkle, Convergence assessment of general fluid equations on unstructured hybrid grids. AIAA Paper 2001-2557 (2001).

[10] S. Pandya, S. Venkateswaran and T. Pulliam, Implementation of preconditioned dual-time procedures in OVERFLOW. AIAA Paper 2003-0072 (2003).

[11] E. Rapposelli, A. Cervone, C. Bramanti and L. D'Agostino, Thermal cavitation experiments on a NACA 0015 hydrofoil, in Proc. of FEDSM'03 4th ASME/JSME Joint Fluids Engineering conference, Honolulu, Hawaii, USA, July 6-11 (2003).

[12] P.L. Roe, Approximate Riemann solvers, parameters vectors, and difference schemes. J. Comput. Phys. 43 (1981) 357-372. | Zbl

[13] E. Sinibaldi, F. Beux and M.V. Salvetti, A preconditioned implicit Roe's scheme for barotropic flows: towards simulation of cavitation phenomena. INRIA research report No. 4891 (2003).

[14] E. Sinibaldi, F. Beux and M.V. Salvetti, A preconditioned compressible flow solver for numerical simulation of 3D cavitation phenomena, ECCOMAS 2004, 4th European Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä, Finland, July 24-28 (2004).

[15] E. Turkel, Preconditioned methods for solving the incompressible and low speed compressible equations. J. Comput. Phys. 72 (1987) 277-298. | Zbl

[16] S. Venkateswaran and C. Merkle, Analysis of preconditioning methods for Euler and Navier-Stokes equations1999).

[17] S. Venkateswaran, D. Li and C. Merkle, Influence of stagnation regions on preconditined solutions at low speeds. AIAA Paper 2003-0435 (2003).

[18] D.C. Wilcox, Turbulence Modeling for CFD. DCW Industries, Inc., ISBN 0-9636051-5-1 (1998).

Cited by Sources: