Degenerate parabolic variational inequalities with convection are solved by means of a combined relaxation method and method of characteristics. The mathematical problem is motivated by Richard's equation, modelling the unsaturated - saturated flow in porous media. By means of the relaxation method we control the degeneracy. The dominance of the convection is controlled by the method of characteristics.
Keywords: Richard's equation, convection-diffusion, parabolic variational inequalities
@article{M2AN_2003__37_3_417_0, author = {Kacur, Jozef and Keer, Roger Van}, title = {Solution of degenerate parabolic variational inequalities with convection}, journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique}, pages = {417--431}, publisher = {EDP-Sciences}, volume = {37}, number = {3}, year = {2003}, doi = {10.1051/m2an:2003035}, mrnumber = {1994310}, zbl = {1033.65049}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an:2003035/} }
TY - JOUR AU - Kacur, Jozef AU - Keer, Roger Van TI - Solution of degenerate parabolic variational inequalities with convection JO - ESAIM: Modélisation mathématique et analyse numérique PY - 2003 SP - 417 EP - 431 VL - 37 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an:2003035/ DO - 10.1051/m2an:2003035 LA - en ID - M2AN_2003__37_3_417_0 ER -
%0 Journal Article %A Kacur, Jozef %A Keer, Roger Van %T Solution of degenerate parabolic variational inequalities with convection %J ESAIM: Modélisation mathématique et analyse numérique %D 2003 %P 417-431 %V 37 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an:2003035/ %R 10.1051/m2an:2003035 %G en %F M2AN_2003__37_3_417_0
Kacur, Jozef; Keer, Roger Van. Solution of degenerate parabolic variational inequalities with convection. ESAIM: Modélisation mathématique et analyse numérique, Volume 37 (2003) no. 3, pp. 417-431. doi : 10.1051/m2an:2003035. http://www.numdam.org/articles/10.1051/m2an:2003035/
[1] Quasilinear elliptic-parabolic differential equations. Math. Z. 183 (1983) 311-341. | Zbl
and ,[2] On the nonstationary flow through porous media. Ann. Math. Pura Appl. CXXXVI (1984) 303-316. | Zbl
, and ,[3] Application of relaxation scheme to degenerate variational inequalities. Appl. Math. 46 (2001) 419-439. | Zbl
,[4] Finite element approximation of transport of reactive solutes in porous media. II: Error estimates for equilibrium adsorption processes. SIAM J. Numer. Anal. 34 (1997) 455-479. | Zbl
and ,[5] An improved error bound for a Lagrange-Galerkin method for contaminant transport with non-lipschitzian adsorption kinetics. SIAM J. Numer. Anal. 35 (1998) 1862-1882. | Zbl
and ,[6] Dynamics of Fluid in Porous Media. Elsevier, New York (1972).
,[7] Analysis of an algorithm for the Galerkin-characteristics method. Numer. Math. 60 (1991) 163-194. | Zbl
,[8] A Galerkin-characteristics algorithm for transport-diffusion equation. SIAM J. Numer. Anal. 32 (1995) 425-455. | Zbl
,[9] Characteristic-Galerkin methods for contaminant transport with non-equilibrium adsorption kinetics. SIAM J. Numer. Anal. 31 (1994) 982-999. | Zbl
, and ,[10] R Douglas and T.F. Russel, Numerical methods for convection dominated diffusion problems based on combining the method of characteristics with finite element or finite difference procedures. SIAM J. Numer. Anal. 19 (1982) 871-885. | Zbl
[11] Eulerian-Lagrangian localized adjoint methods for linear advection or advection-reaction equations and their convergence analysis. Comput. Mech. 12 (1993) 97-121. | Zbl
and ,[12] The finite volume method for Richards equation. Comput. Geosci. 3 (1999) 259-294. | Zbl
, and ,[13] Flux-based method of characteristics for contaminant transport in flowing groundwater. Computing and Visualization in Science 5 (2002) 73-83. | Zbl
,[14] Numerical analysis of variational inequalities, Vol. 8. North-Holland Publishing Company, Stud. Math. Appl. (1981). | MR | Zbl
, and ,[15] Solution of Stefan problems by fully discrete linear schemes. Acta Math. Univ. Comenianae (N.S.) 67 (1998) 351-372. | Zbl
,[16] Operator splitting methods for degenerate convection-diffusion equations II: numerical examples with emphasis on reservoir simulation and sedimentation. Comput. Geosci. 4 (2000) 287-323. | Zbl
, and ,[17] Solution of doubly nonlinear and degenerate parabolic problems by relaxation schemes. Math. Modelling Numer. Anal. 29 (1995) 605-627. | Numdam | Zbl
and ,[18] Solution of some free boundary problems by relaxation schemes. SIAM J. Numer. Anal. 36 (1999) 290-316. | Zbl
,[19] Solution to strongly nonlinear parabolic problems by a linear approximation scheme. IMA J. Numer. Anal. 19 (1999) 119-154. | Zbl
,[20] Solution of degenerate convection-diffusion problems by the method of characteristics. SIAM J. Numer. Anal. 39 (2001) 858-879. | Zbl
,[21] Approximation of degenerate parabolic systems by nondegenerate alliptic and parabolic systems. Appl. Numer. Math. 25 (1997) 1-21. | Zbl
and ,[22] Solution of contaminant transport with adsorption in porous media by the method of characteristics. ESAIM: M2AN 35 (2001) 981-1006. | Numdam | Zbl
and ,[23] Function spaces. Academia, Prague (1977). | MR | Zbl
, and ,[24] Quelques méthodes de résolution des problèmes aux limites non linéaires, Vol. XX. Dunod, Gauthier-Villars, Paris (1969). | MR | Zbl
,[25] Numerical solution of nonlinear diffusion with finite extinction phenomena. Acta Math. Univ. Comenian. (N.S.) 2 (1995) 223-292. | Zbl
,[26] Les méthodes directes en théorie des équations elliptiques. Academia, Prague (1967). | MR
,[27] L1 - contraction and uniqueness for quasilinear elliptic - parabolic equations. C. R. Acad. Sci Paris Sér. I Math. 321 (1995) 105-110. | Zbl
,[28] On the transport-diffusion algorithm and its application to the Navier-Stokes equations. Numer. Math. 38 (1982) 309-332. | Zbl
,[29] An ellam scheme for multidimensional advection-reaction equations and its optimal-order error estimate. SIAM J. Numer. Anal. 38 (2001) 1846-1885. | Zbl
, and ,Cited by Sources: