Coupling of a two phase gas liquid compositional 3D Darcy flow with a 1D compositional free gas flow
ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 5, pp. 1491-1522.

A model coupling a three dimensional gas liquid compositional Darcy flow and a one dimensional compositional free gas flow is presented. The coupling conditions at the interface between the gallery and the porous medium account for the molar normal fluxes continuity for each component, the gas liquid thermodynamical equilibrium, the gas pressure continuity and the gas and liquid molar fractions continuity. This model is applied to the simulation of the mass exchanges at the interface between the repository and the ventilation excavated gallery in a nuclear waste geological repository. The spatial discretization is essentially nodal and based on the vertex approximate gradient (VAG) scheme. Compared with classical nodal approaches such as the Control Volume Finite Element method, the VAG scheme has the advantage to avoid the mixture of different material properties and models in the control volumes located at the interfaces. The discrete model is validated using a quasi analytical solution for the stationary state, and the convergence of the VAG discretization is analysed for a simplified model coupling the Richards approximation in the porous medium and the gas pressure equation in the gallery.

Received:
Accepted:
DOI: 10.1051/m2an/2015091
Classification: 65M08, 65M12, 76S05
Keywords: Finite volume scheme, compositional Darcy flows, two phase Darcy flows, coupling free and Darcy flows, Convergence analysis
Brenner, K. 1; Masson, R. 1; Trenty, L. 2; Zhang, Y. 1

1 Laboratoire de Mathématiques J.A. Dieudonné, UMR 7351 CNRS, University Nice Sophia Antipolis, and team COFFEE, INRIA Sophia Antipolis Méditerranée, Parc Valrose 06108, Nice cedex 02, France.
2 Andra, 1-7 rue Jean Monnet, 92290 Chatenay-Malabry, France.
@article{M2AN_2016__50_5_1491_0,
     author = {Brenner, K. and Masson, R. and Trenty, L. and Zhang, Y.},
     title = {Coupling of a two phase gas liquid compositional {3D} {Darcy} flow with a {1D} compositional free gas flow},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {1491--1522},
     publisher = {EDP-Sciences},
     volume = {50},
     number = {5},
     year = {2016},
     doi = {10.1051/m2an/2015091},
     zbl = {1456.65082},
     mrnumber = {3554550},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2015091/}
}
TY  - JOUR
AU  - Brenner, K.
AU  - Masson, R.
AU  - Trenty, L.
AU  - Zhang, Y.
TI  - Coupling of a two phase gas liquid compositional 3D Darcy flow with a 1D compositional free gas flow
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2016
SP  - 1491
EP  - 1522
VL  - 50
IS  - 5
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2015091/
DO  - 10.1051/m2an/2015091
LA  - en
ID  - M2AN_2016__50_5_1491_0
ER  - 
%0 Journal Article
%A Brenner, K.
%A Masson, R.
%A Trenty, L.
%A Zhang, Y.
%T Coupling of a two phase gas liquid compositional 3D Darcy flow with a 1D compositional free gas flow
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2016
%P 1491-1522
%V 50
%N 5
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2015091/
%R 10.1051/m2an/2015091
%G en
%F M2AN_2016__50_5_1491_0
Brenner, K.; Masson, R.; Trenty, L.; Zhang, Y. Coupling of a two phase gas liquid compositional 3D Darcy flow with a 1D compositional free gas flow. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 50 (2016) no. 5, pp. 1491-1522. doi : 10.1051/m2an/2015091. http://www.numdam.org/articles/10.1051/m2an/2015091/

O. Angelini, C. Chavant, E. Chénier, R. Eymard and S. Granet, Finite volume approximation of a diffusion-dissolution model and application to nuclear waste storage. Math. Comput. Simul. 81 (2011) 2001–2017. | DOI | MR | Zbl

K. Baber, K. Mosthaf, B. Flemisch, R. Helmig and S. Müthing, Numerical scheme for coupling two-phase compositional porous-media flow and one-phase compositional free flow. IMA J. Appl. Math. 77 (2012) 887–909. | DOI | MR | Zbl

A. Bourgeat, M. Jurak and F. Smai, Two phase partially miscible flow and transport in porous media; application to gas migration in nuclear waste repository. Comput. Geosci. 13 (2009) 29–42. | DOI | Zbl

K. Brenner and R. Masson, Convergence of a vertex centred discretization of two-phase darcy flows on general meshes. Int. J. Finite Volumes 10 (2013) 1–37. | MR | Zbl

K. Brenner, M. Groza, C. Guichard and R. Masson, Vertex approximate gradient scheme for hybrid dimensional two-phase darcy flows in fractured porous media. ESAIM: M2AN 49 (2015) 303–330. | DOI | Numdam | MR | Zbl

M. Discacciati, E. Miglio and A. Quarteroni, Mathematical and numerical models for coupling surface and groundwater flows. Appl. Num. Math. 43 (2002) 57–74. | DOI | MR | Zbl

R. Eymard, C. Guichard and R. Herbin, Small-stencil 3d schemes for diffusive flows in porous media. ESAIM: M2AN 46 (2010) 265–290 | DOI | Numdam | MR | Zbl

R. Eymard, R. Herbin, C. Guichard and R. Masson, Vertex centred discretization of compositional multiphase Darcy flows on general meshes. Comput. Geosci. 16 (2012) 987–1005. | DOI | MR

R. Eymard, P. Féron, T. Gallouët, C. Guichard and R. Herbin, Gradient schemes for the stefan problem. Int. J. Finite Volumes 10 (2013) 1–37. | MR | Zbl

R. Eymard, C. Guichard, R. Herbin and R. Masson, Gradient schemes for two-phase flow in heterogeneous porous media and Richards equation. ZAMM - J. Appl. Math. Mech. 94 (2014) 560–585. | DOI | MR | Zbl

V. Girault and B. Rivière, DG approximation of coupled Navier–Stokes and Darcy equations by beaver-joseph-saffman interface condition. SIAM J. Numer. Anal. 47 (2009) 2052–2089. | DOI | MR | Zbl

R. Helmig, B. Flemisch, M. Wolff, A. Ebigbo and H. Class, Model coupling for multiphase flow in porous media. Adv. Water Resour. 51 (2013) 52–66. | DOI

R. Masson, L. Trenty and Y. Zhang, Formulations of two-phase liquid gas compositional Darcy flows with phase transitions. Int. J. Finite Volumes 11 (2014) 1–34. | MR | Zbl

K. Mosthaf, Modeling and Analysis of Coupled Porous-Medium and Free Flow with Application to Evaporation Processes. Ph.D. thesis, University of Stuttgart (2013).

K. Mosthaf, K. Baber, B. Flemisch, R. Helmig, A. Leijnse, I. Rybak and B. Wohlmuth, A coupling concept for two-phase compositional porous-medium and single-phase compositional free flow. Water Resour. Res. 47 (2011). | DOI

A. Lauser, C. Hager, R. Helmig and B. Wohlmuth, A new approach for phase transitions in miscible multi-phase flow in porous media. Adv. Water Resour. 34 (2011) 957–966. | DOI

Q.H. Tran, D. Ferre, C. Pauchon and J.P. Masella, Transient Simulation of Two-Phase Flows in Pipes. Oil Gas Science Technol. 53 (1998) 801–811. | Zbl

A.D. Ventcel, On boundary conditions for multi-dimensional diffusion processes. Theory Probab. Appl. 4 (1959) 164–177. | DOI | MR | Zbl

Y. Zhang, Modélisation et simulation des dispositifs de ventilation dans les stockages de déchets radioactifs. Ph.D. thesis, University Nice Sophia Antipolis (2015).

Cited by Sources: