We consider here the Interior Penalty Discontinuous Galerkin (IPDG) discretization of the wave equation. We show how to derive the optimal penalization parameter involved in this method in the case of regular meshes. Moreover, we provide necessary stability conditions of the global scheme when IPDG is coupled with the classical Leap-Frog scheme for the time discretization. Numerical experiments illustrate the fact that these conditions are also sufficient.
Keywords: discontinuous Galerkin, penalization coefficient, CFL condition, wave equation
@article{M2AN_2013__47_3_903_0, author = {Agut, Cyril and Diaz, Julien}, title = {Stability analysis of the {Interior} {Penalty} {Discontinuous} {Galerkin} method for the wave equation}, journal = {ESAIM: Mathematical Modelling and Numerical Analysis }, pages = {903--932}, publisher = {EDP-Sciences}, volume = {47}, number = {3}, year = {2013}, doi = {10.1051/m2an/2012061}, mrnumber = {3056414}, zbl = {1266.65151}, language = {en}, url = {http://www.numdam.org/articles/10.1051/m2an/2012061/} }
TY - JOUR AU - Agut, Cyril AU - Diaz, Julien TI - Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation JO - ESAIM: Mathematical Modelling and Numerical Analysis PY - 2013 SP - 903 EP - 932 VL - 47 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/m2an/2012061/ DO - 10.1051/m2an/2012061 LA - en ID - M2AN_2013__47_3_903_0 ER -
%0 Journal Article %A Agut, Cyril %A Diaz, Julien %T Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation %J ESAIM: Mathematical Modelling and Numerical Analysis %D 2013 %P 903-932 %V 47 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/m2an/2012061/ %R 10.1051/m2an/2012061 %G en %F M2AN_2013__47_3_903_0
Agut, Cyril; Diaz, Julien. Stability analysis of the Interior Penalty Discontinuous Galerkin method for the wave equation. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 47 (2013) no. 3, pp. 903-932. doi : 10.1051/m2an/2012061. http://www.numdam.org/articles/10.1051/m2an/2012061/
[1] Stability analysis of the interior penalty discontinuous Galerkin method for the wave equation. INRIA Res. Report (2010).
and ,[2] Dispersive and dissipative properties of discontinuous Galerkin finite element methods for the second-order wave equation. J. Sci. Comput. 27 (2006). | MR | Zbl
, and ,[3] An interior penalty finite element method with discontinuous elements. SIAM J. Numer. Anal. 19 (1982) 742-760. | MR | Zbl
,[4] Unified analysis of disconitnuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39 (2002) 1749-1779. | MR | Zbl
, , and ,[5] Modélisation et simulation numérique pour la migration terrestre par équation d'ondes. Ph.D. Thesis (2009).
,[6] A discontinuous finite element formulation for Helmholtz equation. Comput. Methods. Appl. Mech. Engrg. 195 (2006) 4018-4035. | MR | Zbl
, , and ,[7] Higher-Order Numerical Methods for Transient Wave Equations. Springer, Berlin (2001). | MR | Zbl
,[8] Higher-order triangular finite elements with mass-lumping for the wave equation. SIAM J. Numer. Anal. 44 (2006) 2408-2431. | Zbl
, , and ,[9] Higher-order finite elements with mass-lumping for the 1d wave equation. Finite Elem. Anal. Des. 16 (1994) 329-336. | MR | Zbl
, and ,[10] The application of high order differencing for the scalar wave equation. Geophys. 51 (1986) 54-56.
,[11] Stability of the high-order finite elements for acoustic or elastic wave propagation with high-order time stepping. Geophys. J. Int. 181 (2010) 577-590.
and ,[12] Estimation of penalty parameters for symmetric interior penalty galerkin methods. J. Comput. Appl. Math. 206 (2007) 843-872. | MR | Zbl
and ,[13] Eléments finis mixtes spectraux et couches absorbantes parfaitement adaptées pour la propagation d'ondes élastiques en régime transitoire. Ph.D. Thesis (2003).
,[14] Higher order time stepping for second order hyperbolic problems and optimal CFL conditions. Comput. Methods Appl. Sci. 16 (2008) 67-93. | MR | Zbl
and ,[15] Discontinuous Galerkin finite element method for the wave equation. SIAM J. Numer. Anal. 44 (2006) 2408-2431. | MR | Zbl
, and ,[16] Convergence analysis of a fully discrete dicontinuous Galerkin method for the wave equation. Preprint No. 2008-04 (2008).
and ,[17] Introduction to the spectral element method for three-dimensional seismic wave propagation. Geophys J. Int. 139 (1999) 806-822.
and ,[18] Systems of conservation laws. Commun. Pure Appl. Math. XIII (1960) 217-237. | MR | Zbl
and ,[19] Spectral element method for acoustic wave simulation in heterogeneous media. Finite Elem. Anal. Des. 16 (1994) 37-348. | MR | Zbl
and ,[20] An explicit expression for the penalty parameter of the interior penalty method. J. Comput. Phys. 205 (2005) 401-407. | Zbl
,[21] A modified equation approach to constructing fourth-order methods for acoustic wave propagation. SIAM J. Sci. Statist. Comput. 8 (1987) 135-151. | MR | Zbl
and ,[22] On the constants in hp-finite element trace inverse inequalities. Comput. Methods Appl. Mech. Engrg. 192 (2003) 2765-2773. | MR | Zbl
and ,Cited by Sources: