Weighted regularization for composite materials in electromagnetism
ESAIM: Modélisation mathématique et analyse numérique, Volume 44 (2010) no. 1, pp. 75-108.

In this paper, a weighted regularization method for the time-harmonic Maxwell equations with perfect conducting or impedance boundary condition in composite materials is presented. The computational domain Ω is the union of polygonal or polyhedral subdomains made of different materials. As a result, the electromagnetic field presents singularities near geometric singularities, which are the interior and exterior edges and corners. The variational formulation of the weighted regularized problem is given on the subspace of (𝐜𝐮𝐫𝐥;Ω) whose fields 𝐮 satisfy w α div (ε𝐮) L2(Ω) and have vanishing tangential trace or tangential trace in L2(Ω). The weight function w(𝐱) is equivalent to the distance of 𝐱 to the geometric singularities and the minimal weight parameter α is given in terms of the singular exponents of a scalar transmission problem. A density result is proven that guarantees the approximability of the solution field by piecewise regular fields. Numerical results for the discretization of the source problem by means of Lagrange Finite Elements of type P1 and P2 are given on uniform and appropriately refined two-dimensional meshes. The performance of the method in the case of eigenvalue problems is addressed.

DOI: 10.1051/m2an/2009041
Classification: 78M10, 65N30, 78A48
Keywords: Maxwell's equations, interface problem, singularities of solutions, density results, weighted regularization
@article{M2AN_2010__44_1_75_0,
     author = {Ciarlet Jr., Patrick and Lef\`evre, Fran\c{c}ois and Lohrengel, St\'ephanie and Nicaise, Serge},
     title = {Weighted regularization for composite materials in electromagnetism},
     journal = {ESAIM: Mod\'elisation math\'ematique et analyse num\'erique},
     pages = {75--108},
     publisher = {EDP-Sciences},
     volume = {44},
     number = {1},
     year = {2010},
     doi = {10.1051/m2an/2009041},
     mrnumber = {2647754},
     zbl = {1192.78039},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/m2an/2009041/}
}
TY  - JOUR
AU  - Ciarlet Jr., Patrick
AU  - Lefèvre, François
AU  - Lohrengel, Stéphanie
AU  - Nicaise, Serge
TI  - Weighted regularization for composite materials in electromagnetism
JO  - ESAIM: Modélisation mathématique et analyse numérique
PY  - 2010
SP  - 75
EP  - 108
VL  - 44
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/m2an/2009041/
DO  - 10.1051/m2an/2009041
LA  - en
ID  - M2AN_2010__44_1_75_0
ER  - 
%0 Journal Article
%A Ciarlet Jr., Patrick
%A Lefèvre, François
%A Lohrengel, Stéphanie
%A Nicaise, Serge
%T Weighted regularization for composite materials in electromagnetism
%J ESAIM: Modélisation mathématique et analyse numérique
%D 2010
%P 75-108
%V 44
%N 1
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/m2an/2009041/
%R 10.1051/m2an/2009041
%G en
%F M2AN_2010__44_1_75_0
Ciarlet Jr., Patrick; Lefèvre, François; Lohrengel, Stéphanie; Nicaise, Serge. Weighted regularization for composite materials in electromagnetism. ESAIM: Modélisation mathématique et analyse numérique, Volume 44 (2010) no. 1, pp. 75-108. doi : 10.1051/m2an/2009041. http://www.numdam.org/articles/10.1051/m2an/2009041/

[1] C. Amrouche, C. Bernardi, M. Dauge and V. Girault, Vector potentials in three-dimensional non-smooth domains. Math. Meth. Appl. Sci. 21 (1998) 823-864. | Zbl

[2] F. Assous, P. Degond, E. Heintzé, P.-A. Raviart and J. Segré, On a finite element method for solving the three-dimensional Maxwell equations. J. Comput. Phys. 109 (1993) 222-237. | Zbl

[3] F. Assous, P. Degond and J. Segré, Numerical approximation of the Maxwell equations in inhomogeneous media by a P1 conforming finite element method. J. Comput. Phys. 128 (1996) 363-380. | Zbl

[4] F. Assous, P. Ciarlet Jr. and E. Sonnendrücker, Resolution of the Maxwell equations in a domain with reentrant corners. Math. Mod. Num. Anal. 32 (1998) 359-389. | Numdam | Zbl

[5] F. Assous, P. Ciarlet Jr., P.-A. Raviart and E. Sonnendrücker, A characterization of the singular part of the solution to Maxwell's equations in a polyhedral domain. Math. Meth. Appl. Sci. 22 (1999) 485-499. | Zbl

[6] F. Assous, P. Ciarlet Jr. and J. Segré, Numerical solution to the time-dependent Maxwell equations in two-dimensional singular domains: the singular complement method. J. Comput. Phys. 161 (2000) 218-249. | Zbl

[7] M. Birman and M. Solomyak, L2-theory of the Maxwell operator in arbitrary domains. Russ. Math. Surv. 42 (1987) 75-96. | Zbl

[8] M. Birman and M. Solomyak, On the main singularities of the electric component of the electro-magnetic field in regions with screens. St. Petersbg. Math. J. 5 (1993) 125-139. | Zbl

[9] D. Boffi, F. Brezzi and L. Gastaldi, On the convergence of eigenvalues for mixed formulations. Annali Sc. Norm. Sup. Pisa Cl. Sci. 25 (1997) 131-154. | Numdam | Zbl

[10] A.-S. Bonnet-Ben Dhia, C. Hazard and S. Lohrengel, A singular field method for the solution of Maxwell's equations in polyhedral domains. SIAM J. Appl. Math. 59 (1999) 2028-2044. | Zbl

[11] A. Buffa, P. Ciarlet Jr. and E. Jamelot, Solving electromagnetic eigenvalue problems in polyhedral domains. Numer. Math. 113 (2009) 497-518. | Zbl

[12] P. Ciarlet Jr., Augmented formulations for solving Maxwell equations. Comp. Meth. Appl. Mech. Eng. 194 (2005) 559-586. | Zbl

[13] P. Ciarlet Jr. and G. Hechme, Computing electromagnetic eigenmodes with continuous Galerkin approximations. Comp. Meth. Appl. Mech. Eng. 198 (2008) 358-365. | Zbl

[14] P. Ciarlet Jr. and G. Hechme, Mixed, augmented variational formulations for Maxwell's equations: Numerical analysis via the macroelement technique. Numer. Math. (Submitted).

[15] P. Ciarlet Jr., C. Hazard and S. Lohrengel, Les équations de Maxwell dans un polyèdre : un résultat de densité. C. R. Acad. Sci. Paris, Ser. I 326 (1998) 1305-1310. | Zbl

[16] M. Costabel and M. Dauge, Un résultat de densité pour les équations de Maxwell régularisées dans un domaine lipschitzien. C. R. Acad. Sci. Paris, Ser. I 327 (1998) 849-854. | Zbl

[17] M. Costabel and M. Dauge, Singularities of electromagnetic fields in polyhedral domains. Arch. Rational Mech. Anal. 151 (2000) 221-276. | Zbl

[18] M. Costabel and M. Dauge, Weighted regularization of Maxwell's equations in polyhedral domains. Numer. Math. 93 (2002) 239-277. | Zbl

[19] M. Costabel, M. Dauge and S. Nicaise, Singularities of Maxwell interface problems. ESAIM: M2AN 33 (1999) 627-649. | Numdam | Zbl

[20] M. Dauge, Benchmark computations for Maxwell equations for the approximation of highly singular solutions. (2004). See Monique Dauge's personal web page at the location http://perso.univ-rennes1.fr/monique.dauge/core/index.html

[21] P. Fernandes and G. Gilardi, Magnetostatic and electrostatic problems in inhomogeneous anisotropic media with irregular boundary and mixed boundary conditions. Math. Models Meth. Appl. Sci. 7 (1997) 957-991. | Zbl

[22] P. Grisvard, Edge behaviour of the solution of an elliptic problem. Math. Nachr. 132 (1987) 281-299. | Zbl

[23] P. Grisvard, Singularities in boundary value problems, RMA 22. Masson (1992). | Zbl

[24] C. Hazard and M. Lenoir, On the solution of time-harmonic scattering problems for Maxwell's equations. SIAM J. Math. Anal. 27 (1996) 1597-1630. | Zbl

[25] C. Hazard and S. Lohrengel, A singular field method for Maxwell's equations: numerical aspects for 2D magnetostatics. SIAM J. Numer. Anal. 40 (2002) 1021-1040. | Zbl

[26] B. Heinrich, S. Nicaise and B. Weber, Elliptic interface problems in axisymmetric domains. I: Singular functions of non-tensorial type. Math. Nachr. 186 (1997) 147-165. | Zbl

[27] D. Leguillon and E. Sanchez-Palencia, Computation of singular solutions in elliptic problems and elasticity, RMA 5. Masson (1987). | Zbl

[28] S. Lohrengel and S. Nicaise, Singularities and density problems for composite materials in electromagnetism. Comm. Partial Diff. Eq. 27 (2002) 1575-1623. | Zbl

[29] J.M.-S. Lubuma and S. Nicaise, Dirichlet problems in polyhedral domains. I: Regularity of the solutions. Math. Nachr. 168 (1994) 243-261. | Zbl

[30] P. Monk, Finite element methods for Maxwell's equations. Oxford University Press, UK (2003). | Zbl

[31] M. Moussaoui, H( div , rot ,Ω) dans un polygone plan. C. R. Acad. Sci. Paris, Ser. I 322 (1996) 225-229. | Zbl

[32] S. Nazarov and B. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, Exposition in Mathematics 13. De Gruyter, Berlin, Germany (1994). | Zbl

[33] S. Nicaise, Polygonal interface problems. Peter Lang, Berlin, Germany (1993). | Zbl

[34] S. Nicaise and A.-M. Sändig, General interface problems I, II. Math. Meth. Appl. Sci. 17 (1994) 395-450. | Zbl

[35] B. Smith, P. Bjorstad and W. Gropp, Domain decomposition. Parallel multilevel methods for elliptic partial differential equations. Cambridge University Press, New York, USA (1996). | Zbl

Cited by Sources: