Free-energy-dissipative schemes for the Oldroyd-B model
ESAIM: Mathematical Modelling and Numerical Analysis , Volume 43 (2009) no. 3, pp. 523-561.

In this article, we analyze the stability of various numerical schemes for differential models of viscoelastic fluids. More precisely, we consider the prototypical Oldroyd-B model, for which a free energy dissipation holds, and we show under which assumptions such a dissipation is also satisfied for the numerical scheme. Among the numerical schemes we analyze, we consider some discretizations based on the log-formulation of the Oldroyd-B system proposed by Fattal and Kupferman in [J. Non-newtonian Fluid Mech. 123 (2004) 281-285], for which solutions in some benchmark problems have been obtained beyond the limiting Weissenberg numbers for the standard scheme (see [Hulsen et al. J. Non-newtonian Fluid Mech. 127 (2005) 27-39]). Our analysis gives some tracks to understand these numerical observations.

DOI: 10.1051/m2an/2009008
Classification: 65M12, 76M10, 35B45, 76A10, 35B35
Keywords: viscoelastic fluids, Weissenberg number, stability, entropy, finite elements methods, discontinuous Galerkin method, characteristic method
     author = {Boyaval, S\'ebastien and Leli\`evre, Tony and Mangoubi, Claude},
     title = {Free-energy-dissipative schemes for the {Oldroyd-B} model},
     journal = {ESAIM: Mathematical Modelling and Numerical Analysis },
     pages = {523--561},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {3},
     year = {2009},
     doi = {10.1051/m2an/2009008},
     zbl = {1167.76018},
     mrnumber = {2536248},
     language = {en},
     url = {}
AU  - Boyaval, Sébastien
AU  - Lelièvre, Tony
AU  - Mangoubi, Claude
TI  - Free-energy-dissipative schemes for the Oldroyd-B model
JO  - ESAIM: Mathematical Modelling and Numerical Analysis 
PY  - 2009
SP  - 523
EP  - 561
VL  - 43
IS  - 3
PB  - EDP-Sciences
UR  -
DO  - 10.1051/m2an/2009008
LA  - en
ID  - M2AN_2009__43_3_523_0
ER  - 
%0 Journal Article
%A Boyaval, Sébastien
%A Lelièvre, Tony
%A Mangoubi, Claude
%T Free-energy-dissipative schemes for the Oldroyd-B model
%J ESAIM: Mathematical Modelling and Numerical Analysis 
%D 2009
%P 523-561
%V 43
%N 3
%I EDP-Sciences
%R 10.1051/m2an/2009008
%G en
%F M2AN_2009__43_3_523_0
Boyaval, Sébastien; Lelièvre, Tony; Mangoubi, Claude. Free-energy-dissipative schemes for the Oldroyd-B model. ESAIM: Mathematical Modelling and Numerical Analysis , Volume 43 (2009) no. 3, pp. 523-561. doi : 10.1051/m2an/2009008.

[1] D.N. Arnold and J. Qin, Quadratic velocity/linear pressure Stokes elements, in Advances in Computer Methods for Partial Differential Equations, Volume VII, R. Vichnevetsky and R.S. Steplemen Eds. (1992).

[2] M. Bajaj, M. Pasquali and J.R. Prakash, Coil-stretch transition and the breakdown of computations for viscoelastic fluid flow around a confined cylinder. J. Rheol. 52 (2008) 197-223.

[3] J. Baranger and A. Machmoum, Existence of approximate solutions and error bounds for viscoelastic fluid flow: Characteristics method. Comput. Methods Appl. Mech. Engrg. 148 (1997) 39-52. | MR | Zbl

[4] J.W. Barrett and S. Boyaval, Convergence of a finite element approximation to a regularized Oldroyd-B model (in preparation).

[5] J.W. Barrett, C. Schwab and E. Süli, Existence of global weak solutions for some polymeric flow models. Math. Mod. Meth. Appl. Sci. 15 (2005) 939-983. | MR | Zbl

[6] A.N. Beris and B.J. Edwards, Thermodynamics of flowing systems with internal microstructure. Oxford University Press (1994). | MR

[7] J. Bonvin, M. Picasso and R. Stenberg, GLS and EVSS methods for a three fields Stokes problem arising from viscoelastic flows. Comp. Meth. Appl. Mech. Eng. 190 (2001) 3893-3914. | MR | Zbl

[8] F. Brezzi and J. Pitkäranta, On the stabilization of finite element approximations of the Stokes equations, in Efficient Solution of Elliptic System, W. Hackbusch Ed. (1984) 11-19. | MR | Zbl

[9] F. Brezzi, J. Douglas, Jr. and L.D. Marini, Two families of mixed finite elements for second order elliptic problems. Numer. Math. 47 (1985) 217-235. | MR | Zbl

[10] F. Brezzi, J. Douglas, Jr. and L.D. Marini, Recent results on mixed finite element methods for second order elliptic problems, in Vistas in Applied Mathematics: Numerical Analysis, Atmospheric Sciences, Immunology, A.V. Balakrishnan, A.A. Dorodnitsyn and J.L. Lions Eds. (1986) 25-43. | MR | Zbl

[11] R. Codina, Comparison of some finite element methods for solving the diffusion-convection-reaction equation. Comp. Meth. Appl. Mech. Engrg. 156 (1998) 185-210. | MR | Zbl

[12] M. Crouzeix and P.A. Raviart, Conforming and non-conforming finite element methods for solving the stationary Stokes equations. RAIRO Anal. Numér. 3 (1973) 33-75. | Numdam | MR | Zbl

[13] A. Ern and J.-L. Guermond, Theory and practice of finite elements. Springer Verlag, New-York (2004). | MR | Zbl

[14] R. Fattal and R. Kupferman, Constitutive laws for the matrix-logarithm of the conformation tensor. J. Non-Newtonian Fluid Mech. 123 (2004) 281-285. | Zbl

[15] R. Fattal and R. Kupferman, Time-dependent simulation of viscoelastic flows at high Weissenberg number using the log-conformation representation. J. Non-Newtonian Fluid Mech. 126 (2005) 23-37. | Zbl

[16] A. Fattal, O.H. Hald, G. Katriel and R. Kupferman, Global stability of equilibrium manifolds, and “peaking'' behavior in quadratic differential systems related to viscoelastic models. J. Non-Newtonian Fluid Mech. 144 (2007) 30-41.

[17] E. Fernández-Cara, F. Guillén and R.R. Ortega, Mathematical modeling and analysis of viscoelastic fluids of the Oldroyd kind, in Handbook of Numerical Analysis, Vol. 8, P.G. Ciarlet et al. Eds., Elsevier (2002) 543-661. | MR | Zbl

[18] J.-L. Guermond, Stabilization of Galerkin approximations of transport equations by subgrid modeling. ESAIM: M2AN 33 (1999) 1293-1316. | Numdam | MR | Zbl

[19] C. Guillopé and J.C. Saut, Existence results for the flow of viscoelastic fluids with a differential constitutive law. Nonlin. Anal. TMA 15 (1990) 849-869. | MR | Zbl

[20] D. Hu and T. Lelièvre, New entropy estimates for the Oldroyd-B model, and related models. Commun. Math. Sci. 5 (2007) 906-916. | Zbl

[21] T.J.R. Hughes and L.P. Franca, A new finite element formulation for CFD: VII the Stokes problem with various well-posed boundary conditions: Symmetric formulations that converge for all velocity/pressure spaces. Comp. Meth. App. Mech. Eng. 65 (1987) 85-96. | MR | Zbl

[22] M.A. Hulsen, A sufficient condition for a positive definite configuration tensor in differential models. J. Non-Newtonian Fluid Mech. 38 (1990) 93-100.

[23] M.A. Hulsen, R. Fattal and R. Kupferman, Flow of viscoelastic fluids past a cylinder at high Weissenberg number: stabilized simulations using matrix logarithms. J. Non-Newtonian Fluid Mech. 127 (2005) 27-39.

[24] B. Jourdain, C. Le Bris, T. Lelièvre and F. Otto, Long-time asymptotics of a multiscale model for polymeric fluid flows. Arch. Ration. Mech. Anal. 181 (2006) 97-148. | MR | Zbl

[25] N. Kechkar and D. Silvester, Analysis of locally stabilized mixed finite element methods for the Stokes problem. Math. Comput. 58 (1992) 1-10. | MR | Zbl

[26] R.A. Keiller, Numerical instability of time-dependent flows. J. Non-Newtonian Fluid Mech. 43 (1992) 229-246. | Zbl

[27] R. Keunings, Simulation of viscoelastic fluid flow, in Fundamentals of Computer Modeling for Polymer Processing, C. Tucker Ed., Hanse (1989) 402-470.

[28] R. Keunings, A survey of computational rheology, in Proc. 13th Int. Congr. on Rheology, D.M. Binding et al Eds., British Society of Rheology (2000) 7-14.

[29] R. Kupferman, C. Mangoubi and E. Titi, A Beale-Kato-Majda breakdown criterion for an Oldroyd-B fluid in the creeping flow regime. Comm. Math. Sci. 6 (2008) 235-256. | MR | Zbl

[30] Y. Kwon, Finite element analysis of planar 4:1 contraction flow with the tensor-logarithmic formulation of differential constitutive equations. Korea-Australia Rheology Journal 16 (2004) 183-191.

[31] Y. Kwon and A.V. Leonov, Stability constraints in the formulation of viscoelastic constitutive equations. J. Non-Newtonian Fluid Mech. 58 (1995) 25-46.

[32] Y. Lee and J. Xu, New formulations positivity preserving discretizations and stability analysis for non-Newtonian flow models. Comput. Methods Appl. Mech. Engrg. 195 (2006) 1180-1206. | MR | Zbl

[33] A.I. Leonov, Analysis of simple constitutive equations for viscoelastic liquids. J. Non-Newton. Fluid Mech. 42 (1992) 323-350. | Zbl

[34] F.-H. Lin, C. Liu and P.W. Zhang, On hydrodynamics of viscoelastic fluids. Comm. Pure Appl. Math. 58 (2005) 1437-1471. | MR | Zbl

[35] P.L. Lions and N. Masmoudi, Global solutions for some Oldroyd models of non-Newtonian flows. Chin. Ann. Math., Ser. B 21 (2000) 131-146. | MR | Zbl

[36] A. Lozinski and R.G. Owens, An energy estimate for the Oldroyd-B model: theory and applications. J. Non-Newtonian Fluid Mech. 112 (2003) 161-176. | Zbl

[37] R. Mneimne and F. Testard, Introduction à la théorie des groupes de Lie classiques. Hermann (1986). | MR | Zbl

[38] K.W. Morton, A. Priestley and E. Süli, Convergence analysis of the Lagrange-Galerkin method with non-exact integration. RAIRO Modél. Math. Anal. Numér. 22 (1988) 625-653. | Numdam | MR | Zbl

[39] H.C. Öttinger, Beyond Equilibrium Thermodynamics. Wiley (2005).

[40] O. Pironneau, On the transport-diffusion algorithm and its application to the Navier-Stokes equations. Numer. Math. 3 (1982) 309-332. | MR | Zbl

[41] J.M. Rallison and E.J. Hinch, Do we understand the physics in the constitutive equation? J. Non-Newtonian Fluid Mech. 29 (1988) 37-55.

[42] D. Sandri, Non integrable extra stress tensor solution for a flow in a bounded domain of an Oldroyd fluid. Acta Mech. 135 (1999) 95-99. | MR | Zbl

[43] L.R. Scott and M. Vogelius, Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials. RAIRO Modél. Math. Anal. Numér. 19 (1985) 111-143. | Numdam | MR | Zbl

[44] E. Süli, Convergence and nonlinear stability of the Lagrange-Galerkin method for the Navier-Stokes equations. Numer. Math. 53 (1988) 459-483. | MR | Zbl

[45] R. Temam, Sur l'approximation des équations de Navier-Stokes. C. R. Acad. Sci. Paris, Sér. A 262 (1966) 219-221. | MR | Zbl

[46] B. Thomases and M. Shelley, Emergence of singular structures in Oldroyd-B fluids. Phys. Fluids 19 (2007) 103103.

[47] P. Wapperom and M.A. Hulsen, Thermodynamics of viscoelastic fluids: the temperature equation. J. Rheol. 42 (1998) 999-1019.

[48] P. Wapperom, R. Keunings and V. Legat, The backward-tracking lagrangian particle method for transient viscoelastic flows. J. Non-Newtonian Fluid Mech. 91 (2000) 273-295. | Zbl

Cited by Sources: