Minimal NFA and biRFSA languages
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 2, pp. 221-237.

In this paper, we define the notion of biRFSA which is a residual finate state automaton (RFSA) whose the reverse is also an RFSA. The languages recognized by such automata are called biRFSA languages. We prove that the canonical RFSA of a biRFSA language is a minimal NFA for this language and that each minimal NFA for this language is a sub-automaton of the canonical RFSA. This leads to a characterization of the family of biRFSA languages. In the second part of this paper, we define the family of biseparable automata. We prove that every biseparable NFA is uniquely minimal among all NFAs recognizing a same language, improving the result of H. Tamm and E. Ukkonen for bideterministic automata.

DOI : https://doi.org/10.1051/ita:2008022
Classification : 68Q45
Mots clés : residual finite state automata; minimal NFA
@article{ITA_2009__43_2_221_0,
     author = {Latteux, Michel and Roos, Yves and Terlutte, Alain},
     title = {Minimal {NFA} and {biRFSA} languages},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {221--237},
     publisher = {EDP-Sciences},
     volume = {43},
     number = {2},
     year = {2009},
     doi = {10.1051/ita:2008022},
     zbl = {1166.68025},
     mrnumber = {2512256},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita:2008022/}
}
TY  - JOUR
AU  - Latteux, Michel
AU  - Roos, Yves
AU  - Terlutte, Alain
TI  - Minimal NFA and biRFSA languages
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2009
DA  - 2009///
SP  - 221
EP  - 237
VL  - 43
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita:2008022/
UR  - https://zbmath.org/?q=an%3A1166.68025
UR  - https://www.ams.org/mathscinet-getitem?mr=2512256
UR  - https://doi.org/10.1051/ita:2008022
DO  - 10.1051/ita:2008022
LA  - en
ID  - ITA_2009__43_2_221_0
ER  - 
Latteux, Michel; Roos, Yves; Terlutte, Alain. Minimal NFA and biRFSA languages. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 43 (2009) no. 2, pp. 221-237. doi : 10.1051/ita:2008022. http://www.numdam.org/articles/10.1051/ita:2008022/

[1] Dana Angluin. Inference of reversible languages. J. ACM 29 (1982) 741-765. | MR 666776 | Zbl 0485.68066

[2] André Arnold, Anne Dicky, and Maurice Nivat. A note about minimal non deterministic finite automata. Bull. EATCS 47 (1992) 166-169. | Zbl 0751.68038

[3] Christian Carrez. On the minimalization of non-deterministic automaton. Technical report, Laboratoire de Calcul de la Faculté des Sciences de Lille (1970).

[4] Jean-Marc Champarnaud and Fabien Coulon. NFA reduction algorithms by means of regular inequalities. Theoretical Computer Science 327 (2004) 241-253. | MR 2054364 | Zbl 1071.68039

[5] François Denis, Aurélien Lemay, and Alain Terlutte. Residual finite state automata. In Proceedings of STACS 2001 2010. Springer-Verlag, Dresden (2001) 144-157. | MR 1890786 | Zbl 0976.68089

[6] Michael R. Garey and David S. Johnson. Computers and Intractability, A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, New York (1979). | MR 519066 | Zbl 0411.68039

[7] Je Hopcroft and Jd Ullman. Introduction to Automata Theory, Languages, and Computation. Addison-Wesley, Reading, Massachusetts (1979). | MR 645539 | Zbl 0426.68001

[8] Harry B. Hunt Iii, Daniel J. Rosenkrantz, and Thomas G. Szymanski. On the equivalence, containment, and covering problems for the regular and context-free languages. Journal of Computer and System Sciences 12 (1976) 222-268. | MR 400785 | Zbl 0334.68044

[9] Michel Latteux, Aurélien Lemay, Yves Roos, and Alain Terlutte. Identification of biRFSA languages. Theoretical Computer Science 356 (2006) 212-223. | MR 2217839 | Zbl 1160.68417

[10] Michel Latteux, Yves Roos, and Alain Terlutte. BiRFSA languages and minimal NFAs. Technical Report GRAPPA-0205, GRAppA, (2006).

[11] Oliver Matz and Andreas Potthoff. Computing small nondeterministic automata. In U.H. Engberg, K.G. Larsen, and A. Skou, Eds., Workshop on Tools and Algorithms for the Construction and Analysis of Systems (1995).

[12] Dominique Perrin. Finite automata. In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, Volume B: Formal Models and Sematics (B). Elsevier (1990) 1-57. | MR 1127186 | Zbl 0900.68312

[13] Jean-Eric Pin. On reversible automata. In Proceedings of the first LATIN conference, Saõ-Paulo. Lecture Notes in Computer Science 583. Springer Verlag (1992) 401-416. | MR 1253368

[14] L.J. Stockmeyer and A.R. Meyer. Word problems requiring exponential time(preliminary report). In STOC '73: Proceedings of the fifth annual ACM symposium on Theory of computing. ACM Press, NY, USA (1973) 1-9. | MR 418518 | Zbl 0359.68050

[15] Hellis Tamm and Esko Ukkonen. Bideterministic automata and minimal representations of regular languages. Theoretical Computer Science 328 (2004) 135-149. | MR 2101157 | Zbl 1071.68052

Cité par Sources :