A note on univoque self-sturmian numbers
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 42 (2008) no. 4, pp. 659-662.

We compare two sets of (infinite) binary sequences whose suffixes satisfy extremal conditions: one occurs when studying iterations of unimodal continuous maps from the unit interval into itself, but it also characterizes univoque real numbers; the other is a disguised version of the set of characteristic sturmian sequences. As a corollary to our study we obtain that a real number β in (1,2) is univoque and self-sturmian if and only if the β-expansion of 1 is of the form 1v, where v is a characteristic sturmian sequence beginning itself in 1.

DOI: 10.1051/ita:2007058
Classification: 11A63,  68R15
Keywords: sturmian sequences, univoque numbers, self-sturmian numbers
@article{ITA_2008__42_4_659_0,
     author = {Allouche, Jean-Paul},
     title = {A note on univoque self-sturmian numbers},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {659--662},
     publisher = {EDP-Sciences},
     volume = {42},
     number = {4},
     year = {2008},
     doi = {10.1051/ita:2007058},
     mrnumber = {2458699},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita:2007058/}
}
TY  - JOUR
AU  - Allouche, Jean-Paul
TI  - A note on univoque self-sturmian numbers
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2008
DA  - 2008///
SP  - 659
EP  - 662
VL  - 42
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita:2007058/
UR  - https://www.ams.org/mathscinet-getitem?mr=2458699
UR  - https://doi.org/10.1051/ita:2007058
DO  - 10.1051/ita:2007058
LA  - en
ID  - ITA_2008__42_4_659_0
ER  - 
%0 Journal Article
%A Allouche, Jean-Paul
%T A note on univoque self-sturmian numbers
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2008
%P 659-662
%V 42
%N 4
%I EDP-Sciences
%U https://doi.org/10.1051/ita:2007058
%R 10.1051/ita:2007058
%G en
%F ITA_2008__42_4_659_0
Allouche, Jean-Paul. A note on univoque self-sturmian numbers. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 42 (2008) no. 4, pp. 659-662. doi : 10.1051/ita:2007058. http://www.numdam.org/articles/10.1051/ita:2007058/

[1] J.-P. Allouche, Théorie des nombres et automates. Thèse d'État, Université Bordeaux I (1983).

[2] J.-P. Allouche and M. Cosnard, Itérations de fonctions unimodales et suites engendrées par automates. C. R. Acad. Sci. Paris Sér. I 296 (1983) 159-162. | MR | Zbl

[3] J.-P. Allouche and M. Cosnard, The Komornik-Loreti constant is transcendental. Amer. Math. Monthly 107 (2000) 448-449. | MR | Zbl

[4] J.-P. Allouche and M. Cosnard, Non-integer bases, iteration of continuous real maps, and an arithmetic self-similar set. Acta Math. Hungar. 91 (2001) 325-332. | MR | Zbl

[5] J.-P. Allouche, C. Frougny and K.G. Hare, On univoque Pisot numbers. Math. Comput. 76 (2007) 1639-1660. | MR

[6] J.-P. Allouche and A. Glen, Extremal properties of (epi)sturmian sequences and distribution modulo 1, Preprint (2007).

[7] Y. Bugeaud and A. Dubickas, Fractional parts of powers and Sturmian words. C. R. Math. Acad. Sci. Paris 341 (2005) 69-74. | MR | Zbl

[8] S. Bullett and P. Sentenac, Ordered orbits of the shift, square roots, and the devil's staircase. Math. Proc. Cambridge 115 (1994) 451-481. | MR | Zbl

[9] D.P. Chi and D. Kwon, Sturmian words, β-shifts, and transcendence. Theor. Comput. Sci. 321 (2004) 395-404. | MR | Zbl

[10] M. Cosnard, Étude de la classification topologique des fonctions unimodales. Ann. Inst. Fourier 35 (1985) 59-77. | Numdam | MR | Zbl

[11] P. Erdős, I. Joó and V. Komornik, Characterization of the unique expansions 1=q -n i and related problems. Bull. Soc. Math. France 118 (1990) 377-390. | Numdam | MR | Zbl

[12] V. Komornik and P. Loreti, Unique developments in non-integer bases. Amer. Math. Monthly 105 (1998) 636-639. | MR | Zbl

[13] M. Lothaire, Algebraic Combinatorics On Words, Encyclopedia of Mathematics and its Applications, Vol. 90. Cambridge University Press (2002). | MR | Zbl

[14] G. Pirillo, Inequalities characterizing standard Sturmian words. Pure Math. Appl. 14 (2003) 141-144. | MR | Zbl

[15] P. Veerman, Symbolic dynamics and rotation numbers. Physica A 134 (1986) 543-576. | MR | Zbl

[16] P. Veerman, Symbolic dynamics of order-preserving orbits. Physica D 29 (1987) 191-201. | MR | Zbl

Cited by Sources: