When is the orbit algebra of a group an integral domain ? Proof of a conjecture of P. J. Cameron
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 1, pp. 83-103.

Cameron introduced the orbit algebra of a permutation group and conjectured that this algebra is an integral domain if and only if the group has no finite orbit. We prove that this conjecture holds and in fact that the age algebra of a relational structure R is an integral domain if and only if R is age-inexhaustible. We deduce these results from a combinatorial lemma asserting that if a product of two non-zero elements of a set algebra is zero then there is a finite common tranversal of their supports. The proof is built on Ramsey theorem and the integrity of a shuffle algebra.

DOI : https://doi.org/10.1051/ita:2007054
Classification : 03C13,  03C52,  05A16,  05C30,  20B27
Mots clés : relational structures, ages, counting functions, oligomorphic groups, age algebra, Ramsey theorem, integral domain
@article{ITA_2008__42_1_83_0,
     author = {Pouzet, Maurice},
     title = {When is the orbit algebra of a group an integral domain ? {Proof} of a conjecture of {P.} {J.} {Cameron}},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {83--103},
     publisher = {EDP-Sciences},
     volume = {42},
     number = {1},
     year = {2008},
     doi = {10.1051/ita:2007054},
     zbl = {1146.03015},
     mrnumber = {2382545},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita:2007054/}
}
TY  - JOUR
AU  - Pouzet, Maurice
TI  - When is the orbit algebra of a group an integral domain ? Proof of a conjecture of P. J. Cameron
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2008
DA  - 2008///
SP  - 83
EP  - 103
VL  - 42
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita:2007054/
UR  - https://zbmath.org/?q=an%3A1146.03015
UR  - https://www.ams.org/mathscinet-getitem?mr=2382545
UR  - https://doi.org/10.1051/ita:2007054
DO  - 10.1051/ita:2007054
LA  - en
ID  - ITA_2008__42_1_83_0
ER  - 
Pouzet, Maurice. When is the orbit algebra of a group an integral domain ? Proof of a conjecture of P. J. Cameron. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 42 (2008) no. 1, pp. 83-103. doi : 10.1051/ita:2007054. http://www.numdam.org/articles/10.1051/ita:2007054/

[1] J. Berstel and C. Retenauer, Les séries rationnelles et leurs langages. Études et recherches en Informatique. Masson, Paris (1984) p. 132. | MR 745968 | Zbl 0573.68037

[2] N. Bourbaki, Éléments de mathématiques, Fasc. XI. Algèbre, Chap. V. Actualités scientifiques et industrielles, Hermann, Paris (1973). | MR 417224 | Zbl 0205.06001

[3] P.J. Cameron, Transitivity of permutation groups on unordered sets. Math. Z. 48 (1976) 127-139. | MR 401885 | Zbl 0313.20022

[4] P.J. Cameron, Orbits of permutation groups on unordered sets. II. J. London Math. Soc. 23 (1981) 249-264. | MR 609105 | Zbl 0498.20003

[5] P.J. Cameron, Oligomorphic permutation groups. Cambridge University Press, Cambridge (1990). | MR 1066691 | Zbl 0813.20002

[6] P.J. Cameron, The algebra of an age, in Model theory of groups and automorphism groups (Blaubeuren, 1995). Cambridge University Press, Cambridge (1997) 126-133. | MR 1689855 | Zbl 0888.20002

[7] P.J. Cameron, On an algebra related to orbit-counting. J. Group Theory 1 (1998) 173-179. | MR 1614253 | Zbl 0901.20002

[8] P.J. Cameron, Sequences realized by oligomorphic permutation groups. J. Integer Seq. 3 Article 00.1.5, 1 HTML document (electronic) (2000). | MR 1750744 | Zbl 0980.20001

[9] P.J. Cameron, Some counting problems related to permutation groups. Discrete Math. 225 (2000) 77-92. Formal power series and algebraic combinatorics (Toronto, ON, 1998). | MR 1798325 | Zbl 0959.05003

[10] P.J. Cameron, Problems on permutation groups, http://www.maths.qmul.ac.uk/~pjc/pgprob.html

[11] R. Diestel, Graph Theory. Springer-Verlag, Heidelberg. Grad. Texts Math. 173 (2005) 431. | MR 2159259 | Zbl 1074.05001

[12] R. Fraïssé, Cours de logique mathématique. Tome 1: Relation et formule logique. Gauthier-Villars Éditeur, Paris (1971). | MR 345782 | Zbl 0247.02002

[13] R. Fraïssé, Theory of relations. North-Holland Publishing Co., Amsterdam (2000). | MR 1808172 | Zbl 0965.03059

[14] R. Fraïssé and M. Pouzet, Interprétabilité d'une relation pour une chaîne. C. R. Acad. Sci. Paris Sér. A 272 (1971) 1624-1627. | Zbl 0223.04001

[15] D.H. Gottlieb, A class of incidence matrices. Proc. Amer. Math. Soc. 17 (1966) 1233-1237. | MR 204305 | Zbl 0146.01302

[16] R. Graham, B. Rothschild and J.H. Spencer, Ramsey Theory. John Wiley and Sons, NY (1990). | MR 1044995 | Zbl 0705.05061

[17] G. Higman, Ordering by divisibility in abstract algebras. Proc. London Math. Soc. 2 (1952) 326-336. | MR 49867 | Zbl 0047.03402

[18] W. Hodges, Model Theory. Cambridge University Press, Cambridge (1993) 772. | MR 1221741 | Zbl 0789.03031

[19] W.M. Kantor, On incidence matrices of finite projective and affine spaces. Math. Z. 124 (1972) 315-318. | EuDML 171681 | MR 377681 | Zbl 0228.50022

[20] D. Livingstone and A. Wagner, Transitivity of finite permutation groups on unordered sets. Math. Z. 90 (1965) 393-403. | EuDML 170498 | MR 186725 | Zbl 0136.28101

[21] M. Lothaire, Combinatorics on words. Encyclopedia of Mathematics and its Applications 17. Addison-Wesley, Reading, Mass. Reprinted in the Cambridge Mathematical Library, Cambridge University Press, U.K. (1997). | MR 1475463 | Zbl 0874.20040

[22] H.D. Macpherson, Growth rates in infinite graphs and permutation groups. Proc. London Math. Soc. 51 (1985) 285-294. | MR 794114 | Zbl 0549.05032

[23] M. Pouzet, Application d'une propriété combinatoire des parties d'un ensemble aux groupes et aux relations. Math. Z. 150 (1976) 117-134. | EuDML 172411 | MR 460431 | Zbl 0327.20002

[24] M. Pouzet, Sur la théorie des relations. Thèse de doctorat d'État, Université Claude-Bernard, Lyon 1 (1978). | MR 522931

[25] M. Pouzet, Relation minimale pour son âge. Z. Math. Logik Grundlag. Math. 25 (1979) 315-344. | MR 541684 | Zbl 0481.04002

[26] M. Pouzet, Application de la notion de relation presque-enchaînable au dénombrement des restrictions finies d'une relation. Z. Math. Logik Grundlag. Math. 27 (1981) 289-332. | MR 626675 | Zbl 0499.03019

[27] M. Pouzet, Relation impartible. Dissertationnes 103 (1981) 1-48. | MR 626675

[28] M. Pouzet, The profile of relations. Glob. J. Pure Appl. Math. 2 (2006) 237-272 (Proceedings of the 14th Symposium of the Tunisian Mathematical Society held in Hammamet, March 20-23, 2006). | MR 2311852 | Zbl 1120.03022

[29] M. Pouzet and M. Sobrani, Sandwiches of ages. Ann. Pure Appl. Logic 108 (2001) 295-326. | MR 1819061 | Zbl 0987.03043

[30] M. Pouzet and N. Thiéry, Some relational structures with polynomial growth and their associated algebras. May 10th (2005), p. 19, presented at FPSAC for the 75 birthday of A. Garsia. arXiv:math/0601256v1 [math.CO] | Zbl 1267.05304

[31] D.E. Radford, A natural ring basis for the shuffle algebra and an application to group schemes. J. Algebra 58 (1979) 432-454. | MR 540649 | Zbl 0409.16011

[32] F.P. Ramsey, On a problem of formal logic. Proc. London Math. Soc. 30 (1930) 264-286. | JFM 55.0032.04

Cité par Sources :