Object oriented institutions to specify symbolic computation systems
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 41 (2007) no. 2, pp. 191-214.

The specification of the data structures used in EAT, a software system for symbolic computation in algebraic topology, is based on an operation that defines a link among different specification frameworks like hidden algebras and coalgebras. In this paper, this operation is extended using the notion of institution, giving rise to three institution encodings. These morphisms define a commutative diagram which shows three possible views of the same construction, placing it in an equational algebraic institution, in a hidden institution or in a coalgebraic institution. Moreover, these morphisms can be used to obtain a new description of the final objects of the categories of algebras in these frameworks, which are suitable abstract models for the EAT data structures. Thus, our main contribution is a formalization allowing us to encode a family of data structures by means of a single algebra (which can be described as a coproduct on the image of the institution morphisms). With this aim, new particular definitions of hidden and coalgebraic institutions are presented.

DOI: 10.1051/ita:2007015
Classification: 68Q65,  68Q60
Keywords: institution, symbolic computation, specification, object orientation
@article{ITA_2007__41_2_191_0,
     author = {Dom{\'\i}nguez, C\'esar and Lamb\'an, Laureano and Rubio, Julio},
     title = {Object oriented institutions to specify symbolic computation systems},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {191--214},
     publisher = {EDP-Sciences},
     volume = {41},
     number = {2},
     year = {2007},
     doi = {10.1051/ita:2007015},
     mrnumber = {2350644},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita:2007015/}
}
TY  - JOUR
AU  - Domínguez, César
AU  - Lambán, Laureano
AU  - Rubio, Julio
TI  - Object oriented institutions to specify symbolic computation systems
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2007
DA  - 2007///
SP  - 191
EP  - 214
VL  - 41
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita:2007015/
UR  - https://www.ams.org/mathscinet-getitem?mr=2350644
UR  - https://doi.org/10.1051/ita:2007015
DO  - 10.1051/ita:2007015
LA  - en
ID  - ITA_2007__41_2_191_0
ER  - 
%0 Journal Article
%A Domínguez, César
%A Lambán, Laureano
%A Rubio, Julio
%T Object oriented institutions to specify symbolic computation systems
%J RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
%D 2007
%P 191-214
%V 41
%N 2
%I EDP-Sciences
%U https://doi.org/10.1051/ita:2007015
%R 10.1051/ita:2007015
%G en
%F ITA_2007__41_2_191_0
Domínguez, César; Lambán, Laureano; Rubio, Julio. Object oriented institutions to specify symbolic computation systems. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Volume 41 (2007) no. 2, pp. 191-214. doi : 10.1051/ita:2007015. http://www.numdam.org/articles/10.1051/ita:2007015/

[1] M. Barr and Ch. Wells, Category Theory for Computer Science. Prentice Hall International (1995). | Zbl

[2] M. Bidoit and R. Hennicker, Constructor-based observational logic. Technical Report LSV-03-9, Lab. Specification et Verification, ENS de Cachan, Cachan, France (2003).

[3] R.M. Burstall, R. Diaconescu, Hiding and behaviour: an institutional approach, in A Classical Mind: Essays in Honour of C.A.R. Hoare, edited by A. William Roscoe. Prentice-Hall, Englewood Cliffs, NJ (1994) 75-92.

[4] J. Calmet and I.A. Tjandra, A unified-algebra-based specification language for symbolic computing, in Design and Implementation of Symbolic Computation Systems (DISCO'93), edited by A. Miola, Springer, Berlin. Lect. Notes Comput. Sci. 722 (1993) 122-133.

[5] J. Calmet, K. Homann and I.A. Tjandra, Unified domains and abstract computational structures, in Artificial Intelligence and Symbolic Mathematical Computation (AISMC'92), edited by J. Calmet and J.A. Campbell, Springer, Berlin. Lect. Notes Comput. Sci. 737 (1993) 166-177. | MR | Zbl

[6] C. Cîrstea, Coalgebra semantics for hidden algebra: parameterised objects and inheritance, in Recent Trends in Algebraic Development Techniques, edited by F. Parisi-Presicce, Springer, Berlin. Lect. Notes Comput. Sci. 1376 (1998) 174-189. | MR | Zbl

[7] C. Cîrstea, A coalgebraic equational approach to specifying observational structures. Theoret. Comput. Sci. 280 (2002) 35-68. | MR | Zbl

[8] A. Corradini, A completeness result for equational deduction in coalgebraic specification, in Recent Trends in Algebraic Development Techniques, edited by F. Parisi-Presicce, Springer, Berlin. Lect. Notes Comput. Sci. 1376 (1998) 190-205. | MR | Zbl

[9] C. Domínguez, J. Rubio, Modeling inheritance as coercion in a symbolic computation system, in International Symposium on Symbolic and Algebraic Computation (ISSAC'2001), edited by B. Mourrain, ACM Press (2001) 107-115. | Zbl

[10] C. Domínguez, L. Lambán, V. Pascual and J. Rubio, Hidden specification of a functional system, in Computer Aided Systems Theory (EUROCAST'2001), edited by R. Moreno-Díaz, B. Buchberger, J.L. Freire, Springer, Berlin. Lect. Notes Comput. Sci. 2178 (2001) 555-569. | Zbl

[11] X. Dousson, F. Sergeraert and Y. Siret, The Kenzo program, Institut Fourier, Grenoble, (1999), Available at http://www-fourier.ujf-grenoble.fr/~sergerar/Kenzo

[12] D. Duval, Diagrammatic Specifications. Math. Structures Comput. Sci. 13 (2003) 857-890. | Zbl

[13] J.A. Goguen and R.M. Burstall, Institutions: Abstract model theory for specification and programming. J. ACM 39 (1992) 95-146. | Zbl

[14] J.A. Goguen and R. Diaconescu, Towards an algebraic semantics for the object paradigm, in Recent Trends in Data Type Specification, edited by H. Ehrig and F. Orejas Springer, Berlin. Lect. Notes Comput. Sci. 785 (1994) 1-29. | Zbl

[15] J.A. Goguen and G. Malcolm, A hidden agenda. Theoret. Comput. Sci. 245 (2000) 55-101. | Zbl

[16] J.A. Goguen, G. Roşu, Hiding more of hidden algebra, in Formal Methods (FM'99), edited by J.M. Wing, J. Woodcook, J. Davies, Springer, Berlin. Lect. Notes Comput. Sci. 1709, (1999) 1704-1719. | Zbl

[17] J.A. Goguen and G. Roşu, Institution morphisms. Form. Asp. Comput. 13 (2002) 274-307. | Zbl

[18] J.A. Goguen, G. Malcolm and T. Kemp, A hidden herbrand theorem: combining the object and logic paradigms. J. Log. Algebr. Program. 51 (2002) 1-41. | Zbl

[19] R. Hennicker and M. Bidoit, Observational logic, in Algebraic Methodology and Software Technology (AMAST'98), edited by A.M. Haeberer, Springer, Berlin. Lect. Notes Comput. Sci. 1584 (1999) 263-277.

[20] A. Kurz and R. Hennicker, On institutions for modular coalgebraic specifications. Theoret. Comput. Sci. 280 (2002) 69-103. | Zbl

[21] L. Lambán, V. Pascual and J. Rubio, Specifying implementations, in International Symposium on Symbolic and Algebraic Computation (ISSAC'99), edited by S. Dooley. ACM Press, (1999) 245-251.

[22] L. Lambán, V. Pascual and J. Rubio, An object-oriented interpretation of the EAT system, Applicable Algebra in Engineering, Comm. Comput. 14 (2003) 187-215. | Zbl

[23] J. Loeckx, H.D. Ehrich and M. Wolf, Specification of Abstract Data Types. Wiley and Teubner, New York (1996). | MR | Zbl

[24] J. Rubio, F. Sergeraert, Constructive algebraic topology. Bull. Sci. Math. 126 (2002) 389-412. | Zbl

[25] J. Rubio, F. Sergeraert and Y. Siret, EAT: Symbolic Software for Effective Homology Computation, Institut Fourier, Grenoble, 1997. Available at ftp://fourier.ujf-grenoble.fr/pub/EAT

[26] J. Rubio, F. Sergeraert and Y. Siret, Overview of EAT, a System for Effective Homology Computation. The SAC Newsletter 3 (1998) 69-79.

[27] J.J.M.M. Rutten, Universal coalgebra: a theory of systems, Theoret. Comput. Sci. 249 (2000) 3-80. | Zbl

[28] A. Tarlecki, Towards heterogeneous specifications, in Frontiers of Combinig Systems (FroCos'98), Research Studies Press/Wiley, edited by D.M. Gabbay, M. de Rijke. Stud. Logic Comput. 7 (2000) 337-360. | Zbl

Cited by Sources: