Repetition thresholds for subdivided graphs and trees
RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 1, pp. 123-130.

The repetition threshold introduced by Dejean and Brandenburg is the smallest real number α such that there exists an infinite word over a k-letter alphabet that avoids β-powers for all β > α. We extend this notion to colored graphs and obtain the value of the repetition thresholds of trees and “large enough” subdivisions of graphs for every alphabet size.

DOI : https://doi.org/10.1051/ita/2011122
Classification : 68R15
Mots clés : combinatorics on words, repetition threshold, square-free coloring
@article{ITA_2012__46_1_123_0,
     author = {Ochem, Pascal and Vaslet, Elise},
     title = {Repetition thresholds for subdivided graphs and trees},
     journal = {RAIRO - Theoretical Informatics and Applications - Informatique Th\'eorique et Applications},
     pages = {123--130},
     publisher = {EDP-Sciences},
     volume = {46},
     number = {1},
     year = {2012},
     doi = {10.1051/ita/2011122},
     zbl = {1247.68211},
     mrnumber = {2904965},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/ita/2011122/}
}
TY  - JOUR
AU  - Ochem, Pascal
AU  - Vaslet, Elise
TI  - Repetition thresholds for subdivided graphs and trees
JO  - RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications
PY  - 2012
DA  - 2012///
SP  - 123
EP  - 130
VL  - 46
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/ita/2011122/
UR  - https://zbmath.org/?q=an%3A1247.68211
UR  - https://www.ams.org/mathscinet-getitem?mr=2904965
UR  - https://doi.org/10.1051/ita/2011122
DO  - 10.1051/ita/2011122
LA  - en
ID  - ITA_2012__46_1_123_0
ER  - 
Ochem, Pascal; Vaslet, Elise. Repetition thresholds for subdivided graphs and trees. RAIRO - Theoretical Informatics and Applications - Informatique Théorique et Applications, Tome 46 (2012) no. 1, pp. 123-130. doi : 10.1051/ita/2011122. http://www.numdam.org/articles/10.1051/ita/2011122/

[1] A. Aberkane and J. Currie, There exist binary circular 5/2+ power free words of every length. Electron. J. Comb. 11 (2004) R10 | MR 2035304 | Zbl 1058.68084

[2] J. Chalopin and P. Ochem, Dejean's conjecture and letter frequency. RAIRO-Theor. Inf. Appl. 42 (2008) 477-480. | Numdam | MR 2434030 | Zbl 1147.68612

[3] F. Dejean, Sur un théorème de Thue. J. Combin. Theory. Ser. A 13 (1972) 90-99. | MR 300959 | Zbl 0245.20052

[4] J. Grytczuk, Nonrepetitive colorings of graphs - a survey. Int. J. Math. Math. Sci. (2007), doi:10.1155/2007/74639 | MR 2272338 | Zbl 1139.05020

[5] P. Ochem, A generator of morphisms for infinite words. RAIRO-Theor. Inf. Appl. 40 (2006) 427-441. | Numdam | MR 2269202 | Zbl 1110.68122

[6] A. Pezarski and M. Zmarz, Non-repetitive 3-Coloring of subdivided graphs. Electron. J. Comb. 16 (2009) N15 | MR 2515755 | Zbl 1165.05325

Cité par Sources :