Given a Borel function defined on a bounded open set with Lipschitz boundary and , we prove an explicit representation formula for the lower semicontinuous envelope of Mumford-Shah type functionals with the obstacle constraint a.e. on and the Dirichlet boundary condition on .
Classification : 49J45, 74R10
Mots clés : obstacle problems, Mumford-Shah energy, relaxation
@article{COCV_2008__14_4_879_0, author = {Focardi, Matteo and Gelli, Maria Stella}, title = {Relaxation of free-discontinuity energies with obstacles}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {879--896}, publisher = {EDP-Sciences}, volume = {14}, number = {4}, year = {2008}, doi = {10.1051/cocv:2008014}, zbl = {1148.49011}, mrnumber = {2451801}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2008014/} }
TY - JOUR AU - Focardi, Matteo AU - Gelli, Maria Stella TI - Relaxation of free-discontinuity energies with obstacles JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 DA - 2008/// SP - 879 EP - 896 VL - 14 IS - 4 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2008014/ UR - https://zbmath.org/?q=an%3A1148.49011 UR - https://www.ams.org/mathscinet-getitem?mr=2451801 UR - https://doi.org/10.1051/cocv:2008014 DO - 10.1051/cocv:2008014 LA - en ID - COCV_2008__14_4_879_0 ER -
Focardi, Matteo; Gelli, Maria Stella. Relaxation of free-discontinuity energies with obstacles. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 879-896. doi : 10.1051/cocv:2008014. http://www.numdam.org/articles/10.1051/cocv:2008014/
[1] Energies in SBV and variational models in fracture mechanics1997) 1-22. | MR 1473974 | Zbl 0904.73045
and ,[2] Functions of Bounded Variation and Free Discontinuity Problems. Oxford University Press, Oxford (2000). | MR 1857292 | Zbl 0957.49001
, and ,[3] The Euler equation for functionals with linear growth. Trans. Amer. Math. Soc. 290 (1985) 483-501. | MR 792808 | Zbl 0611.49018
,[4] Approximation of Free-Discontinuity Problems, Lecture Notes in Mathematics. Springer-Verlag, Berlin (1998). | MR 1651773 | Zbl 0909.49001
,[5] -convergence for beginners. Oxford University Press, Oxford (2002). | MR 1968440 | Zbl 1198.49001
,[6] Relaxation of the non-parametric Plateau problem with an obstacle. J. Math. Pures Appl. 67 (1988) 359-396. | MR 978576 | Zbl 0617.49018
, , and ,[7] Limits of obstacle problems for the area functional, in Partial Differential Equations and the Calculus of Variations, Vol. I, PNDEA 1, Birkhäuser Boston, Boston (1989) 285-309. | MR 1034009 | Zbl 0678.49033
, , and ,[8] Una definizione alternativa per una misura usata nello studio di ipersuperfici minimali. Boll. Un. Mat. Ital. 8 (1973) 159-173. | MR 341259 | Zbl 0274.49029
,[9] An Introduction to -convergence. Birkhäuser, Boston (1993). | MR 1201152 | Zbl 0816.49001
,[10] Variational problems in Fracture Mechanics. Preprint S.I.S.S.A. (2006). | MR 2222648
,[11] Quasistatic crack growth in nonlinear elasticity. Arch. Ration. Mech. Anal. 176 (2005) 165-225. | MR 2186036 | Zbl 1064.74150
, and ,[12] Problemi di superfici minime con ostacoli: forma non cartesiana. Boll. Un. Mat. Ital. 8 (1973) 80-88. | MR 328751 | Zbl 0289.49042
,[13] Un nuovo funzionale del calcolo delle variazioni. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 82 (1988) 199-210. | MR 1152641 | Zbl 0715.49014
and ,[14] Frontiere orientate di misura minima e questioni collegate. Quaderno della Scuola Normale Superiore di Pisa, Editrice Tecnico Scientifica, Pisa (1972). | MR 493669 | Zbl 0296.49031
, and ,[15] Asymptotic analysis of Mumford-Shah type energies in periodically perforated domains. Interfaces and Free Boundaries 9 (2007) 107-132. | MR 2317301 | Zbl 1122.49009
and ,[16] A measure of De Giorgi and others does not equal twice the Hausdorff measure. Notices Amer. Math. Soc. 24 (1977) A-240.
,[17] On the relationship between Hausdorff measure and a measure of De Giorgi, Colombini, Piccinini. Boll. Un. Mat. Ital. 18-B (1981) 619-628. | MR 629427 | Zbl 0479.28009
,[18] Optimal approximation by piecewise smooth functions and associated variational problems. Comm. Pure Appl. Math. 17 (1989) 577-685. | MR 997568 | Zbl 0691.49036
and ,[19] De Giorgi's measure and thin obstacles, in Geometric measure theory and minimal surfaces, C.I.M.E. III Ciclo, Varenna (1972) 221-230; Edizioni Cremonese, Rome (1973). | MR 407703 | Zbl 0279.49042
,Cité par Sources :