Local minimizers of functionals with multiple volume constraints
ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 780-794.

We study variational problems with volume constraints, i.e., with level sets of prescribed measure. We introduce a numerical method to approximate local minimizers and illustrate it with some two-dimensional examples. We demonstrate numerically nonexistence results which had been obtained analytically in previous work. Moreover, we show the existence of discontinuous dependence of global minimizers from the data by using a Γ-limit argument and illustrate this with numerical computations. Finally we construct explicitly local and global minimizers for problems with two volume constraints.

DOI : https://doi.org/10.1051/cocv:2008013
Classification : 49J,  65K10
Mots clés : volume constrained problems, numerical simulations, level set method, local minima
@article{COCV_2008__14_4_780_0,
     author = {Oudet, \'Edouard and Rieger, Marc Oliver},
     title = {Local minimizers of functionals with multiple volume constraints},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {780--794},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {4},
     year = {2008},
     doi = {10.1051/cocv:2008013},
     zbl = {1148.49030},
     mrnumber = {2451796},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2008013/}
}
TY  - JOUR
AU  - Oudet, Édouard
AU  - Rieger, Marc Oliver
TI  - Local minimizers of functionals with multiple volume constraints
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2008
DA  - 2008///
SP  - 780
EP  - 794
VL  - 14
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2008013/
UR  - https://zbmath.org/?q=an%3A1148.49030
UR  - https://www.ams.org/mathscinet-getitem?mr=2451796
UR  - https://doi.org/10.1051/cocv:2008013
DO  - 10.1051/cocv:2008013
LA  - en
ID  - COCV_2008__14_4_780_0
ER  - 
Oudet, Édouard; Rieger, Marc Oliver. Local minimizers of functionals with multiple volume constraints. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 4, pp. 780-794. doi : 10.1051/cocv:2008013. http://www.numdam.org/articles/10.1051/cocv:2008013/

[1] E. Acerbi, I. Fonseca and G. Mingione, Existence and regularity for mixtures of micromagnetic materials. Proc. Royal Soc. London Sect. A 462 (2006) 2225-2244. | MR 2245168 | Zbl 1149.74333

[2] N. Aguilera, H.W. Alt and L.A. Caffarelli, An optimization problem with volume constraint. SIAM J. Control Optim. 24 (1986) 191-198. | MR 826512 | Zbl 0588.49005

[3] G. Allaire, F. Jouve and A.M. Toader, A level-set method for shape optimization. C. R. Acad. Sci. Paris 334 (2002) 1125-1130. | MR 1911658 | Zbl 1115.49306

[4] L. Ambrosio, I. Fonseca, P. Marcellini and L. Tartar, On a volume-constrained variational problem. Arch. Ration. Mech. Anal. 149 (1999) 23-47. | MR 1723033 | Zbl 0945.49005

[5] A. Braides, Γ-convergence for beginners, Oxford Lecture Series in Mathematics and its Applications 22. Oxford University Press, Oxford (2002). | MR 1968440 | Zbl 1198.49001

[6] D. Bucur and G. Buttazzo, Variational Methods in Shape Optimization Problems 65. Birkhäuser Boston (2005). | MR 2150214 | Zbl 1117.49001

[7] G. Dal Maso, An Introduction to Γ-Convergence. Birkhäuser Boston Inc., Boston, MA (1993). | MR 1201152 | Zbl 0816.49001

[8] M.E. Gurtin, D. Polignone and J. Vinals, Two-phase binary fluids and immissible fluids described by an order parameter. Math. Models Methods Appl. Sci. 6 (1996) 815-831. | MR 1404829 | Zbl 0857.76008

[9] A. Henrot and M. Pierre, Variation et optimisation de formes, une analyse géométrique 48. Springer-Verlag, Paris (2005). | MR 2512810 | Zbl 1098.49001

[10] M. Morini and M.O. Rieger, On a volume constrained variational problem with lower order terms. Appl. Math. Optim. 48 (2003) 21-38. | MR 1977877 | Zbl 1042.49014

[11] S. Mosconi and P. Tilli, Variational problems with several volume constraints on the level sets. Calc. Var. Part. Diff. Equ. 14 (2002) 233-247. | MR 1890401 | Zbl 0995.49003

[12] S. Osher and F. Santosa, Level set methods for optimization problems involving geometry and constraints: frequencies of a two-density inhomogeneous drum. J. Comput. Phys 171 (2001) 272-288. | MR 1843648 | Zbl 1056.74061

[13] S. Osher and J.A. Sethian, Front propagation with curvature-dependant speed: Algorithms based on Hamilton-Jacobi formulations. J. Comput. Phys. 79 (1988) 12-49. | MR 965860 | Zbl 0659.65132

[14] E. Oudet, Numerical minimization of eigenmodes of a membrane with respect to the domain. ESAIM: COCV 10 (2004) 315-335. | EuDML 246025 | Numdam | MR 2084326 | Zbl 1076.74045

[15] M.O. Rieger, Abstract variational problems with volume constraints. ESAIM: COCV 10 (2004) 84-98. | EuDML 245752 | Numdam | MR 2084256 | Zbl 1068.49002

[16] M.O. Rieger, Higher dimensional variational problems with volume constraints - existence results and Γ-convergence. Interfaces and Free Boundaries (to appear). | MR 2453127 | Zbl 1146.49003

[17] J. Sokolowski and J.P. Zolesio, Introduction to Shape Optimization: Shape Sensitivity Analysis, Springer Series in Computational Mathematics 10. Springer (1992). | MR 1215733 | Zbl 0761.73003

[18] P. Vergilius Maro, Aeneidum I. (29-19 BC).

Cité par Sources :