Null-controllability of one-dimensional parabolic equations
ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 2, pp. 284-293.

We prove the interior null-controllability of one-dimensional parabolic equations with time independent measurable coefficients.

DOI : https://doi.org/10.1051/cocv:2007055
Classification : 35B37
Mots clés : null-controllability
@article{COCV_2008__14_2_284_0,
     author = {Escauriaza, Luis and Alessandrini, Giovanni},
     title = {Null-controllability of one-dimensional parabolic equations},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {284--293},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {2},
     year = {2008},
     doi = {10.1051/cocv:2007055},
     zbl = {1145.35337},
     mrnumber = {2394511},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2007055/}
}
TY  - JOUR
AU  - Escauriaza, Luis
AU  - Alessandrini, Giovanni
TI  - Null-controllability of one-dimensional parabolic equations
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2008
DA  - 2008///
SP  - 284
EP  - 293
VL  - 14
IS  - 2
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2007055/
UR  - https://zbmath.org/?q=an%3A1145.35337
UR  - https://www.ams.org/mathscinet-getitem?mr=2394511
UR  - https://doi.org/10.1051/cocv:2007055
DO  - 10.1051/cocv:2007055
LA  - en
ID  - COCV_2008__14_2_284_0
ER  - 
Escauriaza, Luis; Alessandrini, Giovanni. Null-controllability of one-dimensional parabolic equations. ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 2, pp. 284-293. doi : 10.1051/cocv:2007055. http://www.numdam.org/articles/10.1051/cocv:2007055/

[1] L. Ahlfors and L. Bers, Riemann's mapping theorem for variable metrics. Ann. Math 72 (1960) 265-296. | MR 115006 | Zbl 0104.29902

[2] G. Alessandrini and R. Magnanini, Elliptic equations in divergence form, geometric critical oints of solutions and Stekloff eigenfunctions. SIAM J. Math. Anal 25 (1994) 1259-1268. | MR 1289138 | Zbl 0809.35070

[3] G. Alessandrini and L. Rondi, Stable determination of a crack in a planar inhomogeneous conductor. SIAM J. Math. Anal 30 (1998) 326-340. | MR 1664762 | Zbl 0939.35195

[4] L. Bers and L. Nirenberg, On a representation theorem for linear elliptic systems with discontinuous coefficients and applications, in Convegno Internazionale sulle Equazioni alle Derivate Parziali, Cremonese, Roma (1955) 111-138. | MR 76981 | Zbl 0067.32503

[5] L. Bers, F. John and M. Schechter, Partial Differential Equations. Interscience, New York (1964). | MR 163043 | Zbl 0126.00207

[6] T. Carleman, Les Fonctions Quasi Analytiques. Gauthier-Villars, Paris (1926). | JFM 52.0255.02

[7] C. Castro and E. Zuazua, Concentration and lack of observability of waves in highly heterogeneous media. Arch. Rat. Mech. Anal 164 (2002) 39-72. | MR 1921162 | Zbl 1016.35003

[8] E. Fernandez-Cara and E. Zuazua, On the null controllability of the one-dimensional heat equation with BV coefficients Comput. Appl. Math. 21 (2002) 167-190. | MR 2009951 | Zbl 1119.93311

[9] A.V. Fursikov and O. Yu. Imanuvilov, Controllability of evolution equations Lecture Notes Series 34, Research Institute of Mathematics, Global Analysis Research Center, Seoul National University (1996). | MR 1406566 | Zbl 0862.49004

[10] D. Gilbarg and N.S. Trudinger, Elliptic Partial Differential Equations of Second Order, 2nd edn., Springer-Verlag, Berlin-Heildeberg-New York-Tokyo (1983). | MR 737190 | Zbl 0562.35001

[11] O.Yu. Imanuvilov and M. Yamamoto, Carleman estimate for a parabolic equation in Sobolev spaces of negative order and its applications, in Control of Nonlinear Distributed Parameter Systems, G. Chen et al. Eds., Marcel-Dekker (2000) 113-137. | MR 1817179 | Zbl 0977.93041

[12] E.M. Landis and O.A. Oleinik, Generalized analyticity and some related properties of solutions of elliptic and parabolic equations Russian Math. Surv. 29 (1974) 195-212. | MR 402268 | Zbl 0305.35014

[13] G. Lebeau and L. Robbiano, Contrôle exact de l'équation de la chaleur Commun. Partial Differ. Equ. 20 (1995) 335-356. | MR 1312710 | Zbl 0819.35071

[14] G. Lebeau and E. Zuazua, Null controllability of a system of linear thermoelasticity Arch. Rat. Mech. Anal. 141 (1998) 297-329. | MR 1620510 | Zbl 1064.93501

[15] F.H. Lin, A uniqueness theorem for parabolic equations Comm. Pure Appl. Math 42 (1988) 125-136. | MR 1024191 | Zbl 0727.35063

[16] A. López and E. Zuazua, Uniform null-controllability for the one-dimensional heat equation with rapidly oscillating periodic density Ann. I.H.P. - Analyse non linéaire 19 (2002) 543-580. | EuDML 78554 | Numdam | MR 1922469 | Zbl 1009.35009

[17] A.I. Markushevich, Theory of Functions of a Complex Variable Prentice Hall, Englewood Cliffs, NJ (1965). | MR 181738 | Zbl 0135.12002

[18] D.L. Russel, A unified boundary controllability theory for hyperbolic and parabolic partial differential equations Stud. Appl. Math. 52 (1973) 189-221. | MR 341256 | Zbl 0274.35041

[19] M. Tsuji, Potential Theory in Modern Function Theory Maruzen, Tokyo (1959). | MR 114894 | Zbl 0087.28401

[20] I.N. Vekua, Generalized Analytic Functions Pergamon, Oxford (1962). | MR 150320 | Zbl 0100.07603

Cité par Sources :