Curl bounds grad on SO(3)
ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 1, pp. 148-159.

Let F p GL (3) be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form Curl [F p ]·(F p ) T applied to rotations controls the gradient in the sense that pointwise RC 1 ( 3 , SO (3)): Curl [R]·R T 𝕄 3×3 2 1 2DR 27 2 . This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math. 55 (2002) 1461-1506; John, Comme Pure Appl. Math. 14 (1961) 391-413; Reshetnyak, Siberian Math. J. 8 (1967) 631-653)] as well as an associated linearized theorem saying that AC 1 ( 3 ,𝔰𝔬(3)): Curl [A] 𝕄 3×3 2 1 2DA 27 2 = axl [A] 9 2 .

DOI : https://doi.org/10.1051/cocv:2007050
Classification : 74A35,  74E15,  74G65,  74N15,  53AXX,  53B05
Mots clés : rotations, polar-materials, microstructure, dislocation density, rigidity, differential geometry, structured continua
@article{COCV_2008__14_1_148_0,
     author = {M\"unch, Ingo and Neff, Patrizio},
     title = {Curl bounds grad on {SO(3)}},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {148--159},
     publisher = {EDP-Sciences},
     volume = {14},
     number = {1},
     year = {2008},
     doi = {10.1051/cocv:2007050},
     zbl = {1139.74008},
     mrnumber = {2375754},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2007050/}
}
TY  - JOUR
AU  - Münch, Ingo
AU  - Neff, Patrizio
TI  - Curl bounds grad on SO(3)
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2008
DA  - 2008///
SP  - 148
EP  - 159
VL  - 14
IS  - 1
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2007050/
UR  - https://zbmath.org/?q=an%3A1139.74008
UR  - https://www.ams.org/mathscinet-getitem?mr=2375754
UR  - https://doi.org/10.1051/cocv:2007050
DO  - 10.1051/cocv:2007050
LA  - en
ID  - COCV_2008__14_1_148_0
ER  - 
Münch, Ingo; Neff, Patrizio. Curl bounds grad on SO(3). ESAIM: Control, Optimisation and Calculus of Variations, Tome 14 (2008) no. 1, pp. 148-159. doi : 10.1051/cocv:2007050. http://www.numdam.org/articles/10.1051/cocv:2007050/

[1] S. Aubry and M. Ortiz, The mechanics of deformation-induced subgrain-dislocation structures in metallic crystals at large strains. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 459 (2003) 3131-3158. | MR 2027358 | Zbl 1041.74506

[2] B.A. Bilby, R. Bullough and E. Smith, Continuous distributions of dislocations: a new application of the methods of non-riemannian geometry. Proc. Roy. Soc. London, Ser. A 231 (1955) 263-273. | MR 75068

[3] E. Cartan, Leçons sur la géometrie des espaces de Riemann. Gauthier-Villars, Paris (1928). | JFM 54.0755.01 | MR 20842 | Zbl 0060.38101

[4] P. Cermelli and M.E. Gurtin, On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49 (2001) 1539-1568. | Zbl 0989.74013

[5] S. Conti and M. Ortiz, Dislocation microstructures and the effective behavior of single crystals. Arch. Rat. Mech. Anal. 176 (2005) 103-147. | MR 2185859 | Zbl 1064.74144

[6] A. Einstein, Relativity: The Special and General Theory. Crown, New-York (1961). | JFM 48.1059.07 | Zbl 0029.18303

[7] J.D. Eshelby, The continuum theory of lattice defects, volume III of Solid state Physics. Academic Press, New-York (1956).

[8] G. Friesecke, R.D. James and S. Müller, A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461-1506. | MR 1916989 | Zbl 1021.74024

[9] M.E. Gurtin, An Introduction to Continuum Mechanics, Mathematics in Science and Engineering 158. Academic Press, London, 1st edn. (1981). | MR 636255 | Zbl 0559.73001

[10] M.E. Gurtin, On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48 (2000) 989-1036. | MR 1746552 | Zbl 0988.74021

[11] J.P. Hirth and J. Lothe, Theory of Dislocations. McGraw-Hill, New-York (1968).

[12] F. John, Rotation and strain. Comm. Pure Appl. Math. 14 (1961) 391-413. | MR 138225 | Zbl 0102.17404

[13] J. Jost, Riemannian Geometry. Springer-Verlag (2002). | MR 1871261

[14] K. Kondo, Geometry of elastic deformation and incompatibility, in Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry, volume 1, Division C, K. Kondo Ed., Gakujutsu Bunken Fukyo-Kai (1955) 361-373. | MR 80956 | Zbl 0068.14803

[15] E. Kröner, Der fundamentale Zusammenhang zwischen Versetzungsdichte und Spannungsfunktion. Z. Phys. 142 (1955) 463-475. | MR 73402 | Zbl 0068.40803

[16] E. Kröner, Kontinuumstheorie der Versetzungen und Eigenspannungen, Ergebnisse der Angewandten Mathematik 5. Springer, Berlin (1958). | MR 95615 | Zbl 0084.40003

[17] E. Kröner, Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal. 4 (1960) 273-334. | MR 126978 | Zbl 0090.17601

[18] E. Kröner and A. Seeger, Nichtlineare Elastizitätstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal. 3 (1959) 97-119. | MR 106587 | Zbl 0085.38601

[19] D. Kuhlmann-Wilsdorf, Theory of plastic deformation: properties of low energy dislocation structures. Mat. Sci. Eng. A113 (1989) 1.

[20] E.H. Lee, Elastic-plastic deformation at finite strain. J. Appl. Mech. 36 (1969) 1-6. | Zbl 0179.55603

[21] A. Mielke and S. Müller, Lower semi-continuity and existence of minimizers in incremental finite-strain elastoplasticity. ZAMM 86 (2006) 233-250. | MR 2205645 | Zbl 1102.74006

[22] T. Mura, Micromechanics of defects in solids. Kluwer Academic Publishers, Boston (1987). | Zbl 0652.73010

[23] F.R.N. Nabarro, Theory of crystal dislocations. Oxford University Press, Oxford (1967).

[24] J. Necas and I. Hlavacek, Mathematical theory of elastic and elastico-plastic bodies: An introduction. Elsevier, Amsterdam (1981). | MR 600655 | Zbl 0448.73009

[25] P. Neff, On Korn's first inequality with nonconstant coefficients. Proc. Roy. Soc. Edinb. A 132 (2002) 221-243. | MR 1884478 | Zbl 1143.74311

[26] J.F. Nye, Some geometrical relations in dislocated crystals. Acta Metall. 1 (1953) 153-162.

[27] M. Ortiz and E.A. Repetto, Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47 (1999) 397-462. | MR 1674064 | Zbl 0964.74012

[28] M. Ortiz, E.A. Repetto and L. Stainier, A theory of subgrain dislocation structures. J. Mech. Phys. Solids 48 (2000) 2077-2114. | MR 1778727 | Zbl 1001.74007

[29] G.P. Parry and M. Silhavy, Elastic scalar invariants in the theory of defective crystals. R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci. 455 (1999) 4333-4346. | MR 1809363 | Zbl 0954.74013

[30] Yu.G. Reshetnyak, Liouville's theorem on conformal mappings for minimal regularity assumptions. Siberian Math. J. 8 (1967) 631-653. | MR 218544 | Zbl 0167.36102

[31] B. Svendsen, Continuum thermodynamic models for crystal plasticity including the effects of geometrically necessary dislocations. J. Mech. Phys. Solids 50 (2002) 1297-1329. | MR 1903353 | Zbl 1071.74554

[32] R.M. Wald, General Relativity. University of Chicago Press, Chicago (1984). | MR 757180 | Zbl 0549.53001

Cité par Sources :