Let be the plastic deformation from the multiplicative decomposition in elasto-plasticity. We show that the geometric dislocation density tensor of Gurtin in the form applied to rotations controls the gradient in the sense that pointwise . This result complements rigidity results [Friesecke, James and Müller, Comme Pure Appl. Math. 55 (2002) 1461-1506; John, Comme Pure Appl. Math. 14 (1961) 391-413; Reshetnyak, Siberian Math. J. 8 (1967) 631-653)] as well as an associated linearized theorem saying that .
Keywords: rotations, polar-materials, microstructure, dislocation density, rigidity, differential geometry, structured continua
@article{COCV_2008__14_1_148_0, author = {M\"unch, Ingo and Neff, Patrizio}, title = {Curl bounds grad on {SO(3)}}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {148--159}, publisher = {EDP-Sciences}, volume = {14}, number = {1}, year = {2008}, doi = {10.1051/cocv:2007050}, mrnumber = {2375754}, zbl = {1139.74008}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2007050/} }
TY - JOUR AU - Münch, Ingo AU - Neff, Patrizio TI - Curl bounds grad on SO(3) JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2008 SP - 148 EP - 159 VL - 14 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2007050/ DO - 10.1051/cocv:2007050 LA - en ID - COCV_2008__14_1_148_0 ER -
Münch, Ingo; Neff, Patrizio. Curl bounds grad on SO(3). ESAIM: Control, Optimisation and Calculus of Variations, Volume 14 (2008) no. 1, pp. 148-159. doi : 10.1051/cocv:2007050. http://www.numdam.org/articles/10.1051/cocv:2007050/
[1] The mechanics of deformation-induced subgrain-dislocation structures in metallic crystals at large strains. Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. 459 (2003) 3131-3158. | MR | Zbl
and ,[2] Continuous distributions of dislocations: a new application of the methods of non-riemannian geometry. Proc. Roy. Soc. London, Ser. A 231 (1955) 263-273. | MR
, and ,[3] Leçons sur la géometrie des espaces de Riemann. Gauthier-Villars, Paris (1928). | JFM | MR | Zbl
,[4] On the characterization of geometrically necessary dislocations in finite plasticity. J. Mech. Phys. Solids 49 (2001) 1539-1568. | Zbl
and ,[5] Dislocation microstructures and the effective behavior of single crystals. Arch. Rat. Mech. Anal. 176 (2005) 103-147. | MR | Zbl
and ,[6] Relativity: The Special and General Theory. Crown, New-York (1961). | JFM | Zbl
,[7] The continuum theory of lattice defects, volume III of Solid state Physics. Academic Press, New-York (1956).
,[8] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461-1506. | MR | Zbl
, and ,[9] An Introduction to Continuum Mechanics, Mathematics in Science and Engineering 158. Academic Press, London, 1st edn. (1981). | MR | Zbl
,[10] On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J. Mech. Phys. Solids 48 (2000) 989-1036. | MR | Zbl
,[11] Theory of Dislocations. McGraw-Hill, New-York (1968).
and ,[12] Rotation and strain. Comm. Pure Appl. Math. 14 (1961) 391-413. | MR | Zbl
,[13] Riemannian Geometry. Springer-Verlag (2002). | MR
,[14] Geometry of elastic deformation and incompatibility, in Memoirs of the Unifying Study of the Basic Problems in Engineering Science by Means of Geometry, volume 1, Division C, K. Kondo Ed., Gakujutsu Bunken Fukyo-Kai (1955) 361-373. | MR | Zbl
,[15] Der fundamentale Zusammenhang zwischen Versetzungsdichte und Spannungsfunktion. Z. Phys. 142 (1955) 463-475. | MR | Zbl
,[16] Kontinuumstheorie der Versetzungen und Eigenspannungen, Ergebnisse der Angewandten Mathematik 5. Springer, Berlin (1958). | MR | Zbl
,[17] Allgemeine Kontinuumstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal. 4 (1960) 273-334. | MR | Zbl
,[18] Nichtlineare Elastizitätstheorie der Versetzungen und Eigenspannungen. Arch. Rat. Mech. Anal. 3 (1959) 97-119. | MR | Zbl
and ,[19] Theory of plastic deformation: properties of low energy dislocation structures. Mat. Sci. Eng. A113 (1989) 1.
,[20] Elastic-plastic deformation at finite strain. J. Appl. Mech. 36 (1969) 1-6. | Zbl
,[21] Lower semi-continuity and existence of minimizers in incremental finite-strain elastoplasticity. ZAMM 86 (2006) 233-250. | MR | Zbl
and ,[22] Micromechanics of defects in solids. Kluwer Academic Publishers, Boston (1987). | Zbl
,[23] Theory of crystal dislocations. Oxford University Press, Oxford (1967).
,[24] Mathematical theory of elastic and elastico-plastic bodies: An introduction. Elsevier, Amsterdam (1981). | MR | Zbl
and ,[25] On Korn's first inequality with nonconstant coefficients. Proc. Roy. Soc. Edinb. A 132 (2002) 221-243. | MR | Zbl
,[26] Some geometrical relations in dislocated crystals. Acta Metall. 1 (1953) 153-162.
,[27] Nonconvex energy minimization and dislocation structures in ductile single crystals. J. Mech. Phys. Solids 47 (1999) 397-462. | MR | Zbl
and ,[28] A theory of subgrain dislocation structures. J. Mech. Phys. Solids 48 (2000) 2077-2114. | MR | Zbl
, and ,[29] Elastic scalar invariants in the theory of defective crystals. R. Soc. Lond. Proc., Ser. A, Math. Phys. Eng. Sci. 455 (1999) 4333-4346. | MR | Zbl
and ,[30] Liouville's theorem on conformal mappings for minimal regularity assumptions. Siberian Math. J. 8 (1967) 631-653. | MR | Zbl
,[31] Continuum thermodynamic models for crystal plasticity including the effects of geometrically necessary dislocations. J. Mech. Phys. Solids 50 (2002) 1297-1329. | MR | Zbl
,[32] General Relativity. University of Chicago Press, Chicago (1984). | MR | Zbl
,Cited by Sources: