We consider the linearized elasticity system in a multidomain of . This multidomain is the union of a horizontal plate with fixed cross section and small thickness , and of a vertical beam with fixed height and small cross section of radius . The lateral boundary of the plate and the top of the beam are assumed to be clamped. When and tend to zero simultaneously, with , we identify the limit problem. This limit problem involves six junction conditions.
Keywords: junctions, thin structures, plates, beams, linear elasticity, asymptotic analysis
@article{COCV_2007__13_3_419_0, author = {Gaudiello, Antonio and Monneau, R\'egis and Mossino, Jacqueline and Murat, Fran\c{c}ois and Sili, Ali}, title = {Junction of elastic plates and beams}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {419--457}, publisher = {EDP-Sciences}, volume = {13}, number = {3}, year = {2007}, doi = {10.1051/cocv:2007036}, mrnumber = {2329170}, zbl = {1133.35322}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2007036/} }
TY - JOUR AU - Gaudiello, Antonio AU - Monneau, Régis AU - Mossino, Jacqueline AU - Murat, François AU - Sili, Ali TI - Junction of elastic plates and beams JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 419 EP - 457 VL - 13 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2007036/ DO - 10.1051/cocv:2007036 LA - en ID - COCV_2007__13_3_419_0 ER -
%0 Journal Article %A Gaudiello, Antonio %A Monneau, Régis %A Mossino, Jacqueline %A Murat, François %A Sili, Ali %T Junction of elastic plates and beams %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 419-457 %V 13 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2007036/ %R 10.1051/cocv:2007036 %G en %F COCV_2007__13_3_419_0
Gaudiello, Antonio; Monneau, Régis; Mossino, Jacqueline; Murat, François; Sili, Ali. Junction of elastic plates and beams. ESAIM: Control, Optimisation and Calculus of Variations, Volume 13 (2007) no. 3, pp. 419-457. doi : 10.1051/cocv:2007036. http://www.numdam.org/articles/10.1051/cocv:2007036/
[1] A variational definition of the strain energy for an elastic string. J. Elasticity 25 (1991) 137-148. | Zbl
, and ,[2] Fonctions Spaces and Potential Theory. Springer Verlag, Berlin (1996). | MR | Zbl
and ,[3] Dimension reduction in variational problems, asymptotic development in -convergence and thin structures in elasticity. Asymptot. Anal. 9 (1994) 61-100. | Zbl
, and ,[4] Thin elastic and periodic plates. Math. Methods Appl. Sci. 6 (1984) 159-191. | Zbl
,[5] Plates and Junctions in Elastic Multi-Structures: An Asymptotic Analysis. Masson, Paris (1990). | MR | Zbl
,[6] Mathematical Elasticity, Volume II: Theory of Plates. North-Holland, Amsterdam (1997). | MR | Zbl
,[7] A justification of the two-dimensional linear plate model. J. Mécanique 18 (1979) 315-344. | Zbl
and ,[8] Asymptotic theory and analysis for displacements and stress distribution in nonlinear elastic straight slender rods. J. Elasticity 19 (1988) 111-161. | Zbl
, , , , ,[9] Homogenization of Reticulated Structures. Springer-Verlag, New York (1999). | MR | Zbl
and ,[10] Asymptotics of arbitrary order for a thin elastic clamped plate, I: Optimal error estimates. Asymptot. Anal. 13 (1996) 167-197. | Zbl
and ,[11] A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm. Pure Appl. Math. 55 (2002) 1461-1506. | Zbl
, and ,[12] A hierarchy of plate models derived from nonlinear elasticity by gamma-convergence. Arch. Rat. Mech. Anal. 180 (2006) 183-236. | Zbl
, and ,[13] Asymptotic analysis of a class of minimization problems in a thin multidomain. Calc. Var. Part. Diff. Eq. 15 (2002) 181-201. | Zbl
, , and ,[14] Asymptotic analysis for monotone quasilinear problems in thin multidomains. Diff. Int. Eq. 15 (2002) 623-640. | Zbl
, , and ,[15] On the junction of elastic plates and beams. C.R. Acad. Sci. Paris Sér. I 335 (2002) 717-722. | Zbl
, , , and ,[16] Junction in a thin multidomain for a fourth order problem. M3AS: Math. Models Methods Appl. Sci. 16 (2006) 1887-1918. | Zbl
and ,[17] Modélisation de la jonction entre une plaque et une poutre en élasticité linéarisée. RAIRO: Modél. Math. Anal. Numér. 27 (1993) 77-105. | Numdam | Zbl
,[18] Modeling of the junction between a plate and a rod in nonlinear elasticity. Asymptotic Anal. 7 (1993) 179-194. | Zbl
,[19] Asymptotic representation of elastic fields in a multi-structure. Asymptot. Anal. 11 (1995) 343-415. | Zbl
, and ,[20] Problèmes Variationnels dans les Multi-domaines: Modélisation des Jonctions et Applications. Masson, Paris (1991). | MR | Zbl
,[21] Convergence of displacements and stresses in linearly elastic slender rods as the thickness goes to zero. Asymptot. Anal. 10 (1995) 367-402. | Zbl
,[22] The nonlinear membrane model as variational limit of nonlinear three-dimensional elasticity. J. Math. Pures Appl. 74 (1995) 549-578. | Zbl
and ,[23] The membrane shell model in nonlinear elasticity: a variational asymptotic derivation. J. Nonlinear Sci. 6 (1996) 59-84. | Zbl
and ,[24] Error estimate for the transition 3d-1d in anisotropic heterogeneous linearized elasticity. To appear.
, and ,[25] Derivation of the nonlinear bending-torsion theory for inextensible rods by -convergence. Calc. Var. Part. Diff. Eq. 18 (2003) 287-305. | Zbl
and ,[26] A nonlinear model for inextensible rods as a low energy -limit of three-dimensional nonlinear elasticity. Ann. Inst. H. Poincaré Anal. Non Linéaire 21 (2004) 271-293. | Numdam | Zbl
and ,[27] Comportement asymptotique des solutions du sytème de l'élasticité linéarisée anisotrope hétérogène dans des cylindres minces. C.R. Acad. Sci. Paris Sér. I 328 (1999) 179-184. | Zbl
and ,[28] Anisotropic, heterogeneous, linearized elasticity problems in thin cylinders. To appear.
and ,[29] Mathematical Problems in Elasticity and Homogenization. North-Holland, Amsterdam (1992). | MR | Zbl
, and ,[30] Thin elastic beams: the variational approach to St. Venant's problem. Asymptot. Anal. 20 (1999) 39-60. | Zbl
,[31] Mathematical Modelling of Rods, Handbook of Numerical Analysis 4. North-Holland, Amsterdam (1996). | MR | Zbl
and ,Cited by Sources: