A second-order hamiltonian system with time recurrence is studied. The recurrence condition is weaker than almost periodicity. The existence is proven of an infinite family of solutions homoclinic to zero whose support is spread out over the real line.
Keywords: mountain pass theorem, Palais-Smale sequences, almost periodic, hamiltonian system
@article{COCV_2007__13_3_528_0, author = {Spradlin, Gregory S.}, title = {Scattered homoclinics to a class of time-recurrent hamiltonian systems}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {528--537}, publisher = {EDP-Sciences}, volume = {13}, number = {3}, year = {2007}, doi = {10.1051/cocv:2007023}, mrnumber = {2329174}, zbl = {1124.37037}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2007023/} }
TY - JOUR AU - Spradlin, Gregory S. TI - Scattered homoclinics to a class of time-recurrent hamiltonian systems JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2007 SP - 528 EP - 537 VL - 13 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2007023/ DO - 10.1051/cocv:2007023 LA - en ID - COCV_2007__13_3_528_0 ER -
%0 Journal Article %A Spradlin, Gregory S. %T Scattered homoclinics to a class of time-recurrent hamiltonian systems %J ESAIM: Control, Optimisation and Calculus of Variations %D 2007 %P 528-537 %V 13 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2007023/ %R 10.1051/cocv:2007023 %G en %F COCV_2007__13_3_528_0
Spradlin, Gregory S. Scattered homoclinics to a class of time-recurrent hamiltonian systems. ESAIM: Control, Optimisation and Calculus of Variations, Volume 13 (2007) no. 3, pp. 528-537. doi : 10.1051/cocv:2007023. http://www.numdam.org/articles/10.1051/cocv:2007023/
[1] Homoclinic orbits for second order Hamiltonian systems possessing superquadratic potentials. J. Amer. Math. Soc. 4 (1991) 693-627. | Zbl
and ,[2] Multiplicity of homoclinics for a class of time recurrent second order Hamiltonian systems. Calc. Var. 5 (1997) 523-555. | Zbl
, and ,[3] Minimax Methods in Critical Point Theory with Applications to Differential Equations, C. B. M. S. Regional Conf. Series in Math. 65. Amer. Math. Soc., Providence (1986). | MR | Zbl
,[4] Existence of solutions to a Hamiltonian system without convexity condition on the nonlinearity. Electronic J. Diff. Equ. 2004 (2004) 1-13. | Zbl
,[5] On the existence of homoclinic solutions to almost periodic second order systems. Ann. l'Instit. Henri Poincaré 13 (1996) 783-812. | Numdam | Zbl
, and ,Cited by Sources: