We establish two new formulations of the membrane problem by working in the space of -Young measures and -varifolds. The energy functional related to these formulations is obtained as a limit of the formulation of the behavior of a thin layer for a suitable variational convergence associated with the narrow convergence of Young measures and with some weak convergence of varifolds. The interest of the first formulation is to encode the oscillation informations on the gradients minimizing sequences related to the classical formulation. The second formulation moreover accounts for concentration effects.
Keywords: membrane, Young measures, varifolds
@article{COCV_2005__11_3_449_0, author = {Leghmizi, Med Lamine and Licht, Christian and Michaille, G\'erard}, title = {The nonlinear membrane model : a {Young} measure and varifold formulation}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {449--472}, publisher = {EDP-Sciences}, volume = {11}, number = {3}, year = {2005}, doi = {10.1051/cocv:2005014}, mrnumber = {2148853}, zbl = {1081.74027}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv:2005014/} }
TY - JOUR AU - Leghmizi, Med Lamine AU - Licht, Christian AU - Michaille, Gérard TI - The nonlinear membrane model : a Young measure and varifold formulation JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2005 SP - 449 EP - 472 VL - 11 IS - 3 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv:2005014/ DO - 10.1051/cocv:2005014 LA - en ID - COCV_2005__11_3_449_0 ER -
%0 Journal Article %A Leghmizi, Med Lamine %A Licht, Christian %A Michaille, Gérard %T The nonlinear membrane model : a Young measure and varifold formulation %J ESAIM: Control, Optimisation and Calculus of Variations %D 2005 %P 449-472 %V 11 %N 3 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv:2005014/ %R 10.1051/cocv:2005014 %G en %F COCV_2005__11_3_449_0
Leghmizi, Med Lamine; Licht, Christian; Michaille, Gérard. The nonlinear membrane model : a Young measure and varifold formulation. ESAIM: Control, Optimisation and Calculus of Variations, Volume 11 (2005) no. 3, pp. 449-472. doi : 10.1051/cocv:2005014. http://www.numdam.org/articles/10.1051/cocv:2005014/
[1] Variational Convergence for Functions and Operators. Applicable Mathematics Series, Pitman Advanced Publishing Program (1984). | MR | Zbl
,[2] Lectures on Young measures theory and its applications in economics. Workshop di Teoria della Misura e Analisi Reale, Grado, 1997, Rend. Istit. Univ. Trieste 31 Suppl. 1 (2000) 1-69. | Zbl
,[3] A theory of thin films of martinsitic materials with applications to microactuators. J. Mech. Phys. Solids 47 (1999) 531-576. | Zbl
and ,[4] Direct Methods in the Calculus of Variations. Springer-Verlag, Berlin. Appl. Math. Sciences 78 (1989). | MR | Zbl
,[5] Dal Maso, An introduction to -convergence. Birkäuser, Boston (1993). | MR | Zbl
[6] Analysis of concentration and oscillation effects generated by gradients. SIAM J. Math. Anal. 29 (1998) 736-756. | Zbl
, and ,[7] The energy density of martensitic thin films via dimension reduction | Zbl
and ,[8] Characterization of Young measures generated by gradients. Arch. Rational Mech. Anal. 119 (1991) 329-365. | Zbl
and ,[9] The nonlinear membrane model as Variational limit in nonlinear three-dimensional elasticity. J. Math. Pures Appl., IX. Ser. 74 (1995) 549-578. | Zbl
and ,[10] Parametrized measures and variational Principle. Birkhäuser (1997). | MR | Zbl
,[11] A new approach to Young measure theory, relaxation and convergence in energy. Ann. Inst. Henri Poincaé 16 (1999) 773-812. | Numdam | Zbl
,[12] Young measures. Methods of Nonconvex Analysis, A. Cellina Ed. Springer-Verlag, Berlin. Lect. Notes Math. 1446 (1990) 152-188. | Zbl
,[13] A course on Young measures. Workshop di Teoria della Misura e Analisi Reale, Grado, September 19-October 2, 1993, Rend. Istit. Mat. Univ. Trieste 26 Suppl. (1994) 349-394 | Zbl
,Cited by Sources: