On the lower semicontinuity of supremal functionals
ESAIM: Control, Optimisation and Calculus of Variations, Volume 9 (2003), pp. 135-143.

In this paper we study the lower semicontinuity problem for a supremal functional of the form F(u,Ω)= ess sup xΩf(x,u(x),Du(x)) with respect to the strong convergence in L (Ω), furnishing a comparison with the analogous theory developed by Serrin for integrals. A sort of Mazur’s lemma for gradients of uniformly converging sequences is proved.

DOI: 10.1051/cocv:2003005
Classification: 49J45,  49L25
Keywords: supremal functionals, lower semicontinuity, level convexity, calculus of variations, Mazur's lemma
@article{COCV_2003__9__135_0,
     author = {Gori, Michele and Maggi, Francesco},
     title = {On the lower semicontinuity of supremal functionals},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {135--143},
     publisher = {EDP-Sciences},
     volume = {9},
     year = {2003},
     doi = {10.1051/cocv:2003005},
     zbl = {1066.49010},
     mrnumber = {1957094},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv:2003005/}
}
TY  - JOUR
AU  - Gori, Michele
AU  - Maggi, Francesco
TI  - On the lower semicontinuity of supremal functionals
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2003
DA  - 2003///
SP  - 135
EP  - 143
VL  - 9
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv:2003005/
UR  - https://zbmath.org/?q=an%3A1066.49010
UR  - https://www.ams.org/mathscinet-getitem?mr=1957094
UR  - https://doi.org/10.1051/cocv:2003005
DO  - 10.1051/cocv:2003005
LA  - en
ID  - COCV_2003__9__135_0
ER  - 
%0 Journal Article
%A Gori, Michele
%A Maggi, Francesco
%T On the lower semicontinuity of supremal functionals
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2003
%P 135-143
%V 9
%I EDP-Sciences
%U https://doi.org/10.1051/cocv:2003005
%R 10.1051/cocv:2003005
%G en
%F COCV_2003__9__135_0
Gori, Michele; Maggi, Francesco. On the lower semicontinuity of supremal functionals. ESAIM: Control, Optimisation and Calculus of Variations, Volume 9 (2003), pp. 135-143. doi : 10.1051/cocv:2003005. http://www.numdam.org/articles/10.1051/cocv:2003005/

[1] E. Acerbi, G. Buttazzo and F. Prinari, The class of functionals which can be represented by a supremum. J. Convex Anal. 9 (to appear). | MR | Zbl

[2] L. Ambrosio, New lower semicontinuity results for integral functionals. Rend. Accad. Naz. Sci. XL 11 (1987) 1-42. | MR | Zbl

[3] G. Aronsson, Minimization problems for the functional sup x F(x,f(x),f ' (x)). Ark. Mat. 6 (1965) 33-53. | MR | Zbl

[4] G. Aronsson, Extension of functions satisfying Lipschitz conditions. Ark. Mat. 6 (1967) 551-561. | MR | Zbl

[5] G. Aronsson, Minimization problems for the functional sup x F(x,f(x),f ' (x)) II. Ark. Mat. 6 (1969) 409-431. | MR | Zbl

[6] G. Aronsson, Minimization problems for the functional sup x F(x,f(x),f ' (x)) III. Ark. Mat. 7 (1969) 509-512. | MR | Zbl

[7] E.N. Barron, R.R. Jensen and C.Y. Wang, Lower semicontinuity of L functionals. Ann. Inst. H. Poincaré Anal. Non Linéaire 18 (2001) 495-517. | EuDML | Numdam | MR | Zbl

[8] E.N. Barron and W. Liu, Calculus of variations in L . Appl. Math. Optim. 35 (1997) 237-263. | MR | Zbl

[9] G. Buttazzo, Semicontinuity, Relaxation and Integral Representation in the Calculus of Variations. Longman, Harlow, Pitman Res. Notes Math. Ser. 207 (1989). | MR | Zbl

[10] L. Carbone and C. Sbordone, Some properties of Γ-limits of integral functionals. Ann. Mat. Pura Appl. 122 (1979) 1-60. | MR | Zbl

[11] G. Dal Maso, Integral representation on BV(Ω) of Γ-limits of variational integrals. Manuscripta Math. 30 (1980) 387-416. | EuDML | MR | Zbl

[12] E. De Giorgi, Teoremi di semicontinuità nel calcolo delle variazioni. Istituto Nazionale di Alta Matematica, Roma (1968).

[13] E. De Giorgi, G. Buttazzo and G. Dal Maso, On the lower semicontinuity of certain integral functionals. Atti Accad. Naz. Lincei, Cl. Sci. Fis. Mat. Natur., Rend. 74 (1983) 274-282. | EuDML | MR | Zbl

[14] G. Eisen, A counterexample for some lower semicontinuity results. Math. Z. 162 (1978) 241-243. | EuDML | MR | Zbl

[15] I. Fonseca and G. Leoni, Some remarks on lower semicontinuity. Indiana Univ. Math. J. 49 (2000) 617-635. | MR | Zbl

[16] I. Fonseca and G. Leoni, On lower semicontinuity and relaxation. Proc. Roy. Soc. Edinburgh Sect. A 131 (2001) 519-565. | MR | Zbl

[17] M. Gori, F. Maggi and P. Marcellini, On some sharp lower semicontinuity condition in L 1 . Differential Integral Equations (to appear). | MR | Zbl

[18] M. Gori and P. Marcellini, An extension of the Serrin's lower semicontinuity theorem. J. Convex Anal. 9 (2002) 1-28. | Zbl

[19] A.D. Ioffe, On lower semicontinuity of integral functionals. SIAM J. Control Optim. 15 (1977) 521-538. | MR | Zbl

[20] C.Y. Pauc, La méthode métrique en calcul des variations. Hermann, Paris (1941). | JFM | Zbl

[21] J. Serrin, On the definition and properties of certain variational integrals. Trans. Amer. Math. Soc. 101 (1961) 139-167. | MR | Zbl

Cited by Sources: