In this paper we prove the existence of insensitizing controls for a viscous newtonian fluid wherein thermic effects are taken into acount, the so called Boussinesq system. The proof relies on a standard approach introduced by Fursikov and Imanuvilov for the Navier−Stokes system which consists in solving a constrained extremal problem, and then on an inverse mapping theorem to deal with the nonlinear system. Furthermore, we use the coupling with the heat equation to get rid of two components of the control in the fluid equations.
Mots-clés : Navier−Stokes system, Boussinesq system, null controllability, Carleman inequalities, insensitizing controls
@article{COCV_2015__21_1_73_0, author = {Carre\~no, N. and Guerrero, S. and Gueye, M.}, title = {Insensitizing controls with two vanishing components for the three-dimensional {Boussinesq} system}, journal = {ESAIM: Control, Optimisation and Calculus of Variations}, pages = {73--100}, publisher = {EDP-Sciences}, volume = {21}, number = {1}, year = {2015}, doi = {10.1051/cocv/2014020}, mrnumber = {3348416}, zbl = {1315.35158}, language = {en}, url = {http://www.numdam.org/articles/10.1051/cocv/2014020/} }
TY - JOUR AU - Carreño, N. AU - Guerrero, S. AU - Gueye, M. TI - Insensitizing controls with two vanishing components for the three-dimensional Boussinesq system JO - ESAIM: Control, Optimisation and Calculus of Variations PY - 2015 SP - 73 EP - 100 VL - 21 IS - 1 PB - EDP-Sciences UR - http://www.numdam.org/articles/10.1051/cocv/2014020/ DO - 10.1051/cocv/2014020 LA - en ID - COCV_2015__21_1_73_0 ER -
%0 Journal Article %A Carreño, N. %A Guerrero, S. %A Gueye, M. %T Insensitizing controls with two vanishing components for the three-dimensional Boussinesq system %J ESAIM: Control, Optimisation and Calculus of Variations %D 2015 %P 73-100 %V 21 %N 1 %I EDP-Sciences %U http://www.numdam.org/articles/10.1051/cocv/2014020/ %R 10.1051/cocv/2014020 %G en %F COCV_2015__21_1_73_0
Carreño, N.; Guerrero, S.; Gueye, M. Insensitizing controls with two vanishing components for the three-dimensional Boussinesq system. ESAIM: Control, Optimisation and Calculus of Variations, Volume 21 (2015) no. 1, pp. 73-100. doi : 10.1051/cocv/2014020. http://www.numdam.org/articles/10.1051/cocv/2014020/
V.M. Alekseev, V.M. Tikhomirov and S.V. Fomin., Optimal Control, Translated from the Russian by V.M. Volosov, Contemporary Soviet Mathematics. Consultants Bureau, New York (1987). | MR | Zbl
Controls insensitizing the norm of the solution of a semilinear heat equation. J. Math. Anal. Appl. 195 (1995) 658–683. | DOI | MR | Zbl
and ,Local controllability of the -dimensional Boussinesq system with scalar controls in an arbitrary control domain. Math. Control Relat. Fields 2 (2012) 361–382. | DOI | MR | Zbl
,Local null controllability of the -dimensional Navier−Stokes system with scalar controls in an arbitrary control domain. J. Math. Fluid Mech. 15 (2013) 139–153. | DOI | MR | Zbl
and ,Insensitizing controls with one vanishing component for the Navier−Stokes system. J. Math. Pures Appl. 101 (2014) 27–53. | DOI | MR | Zbl
and ,Null controllability of the -dimensional Stokes system with scalar controls. J. Differ. Equ. 246 (2009) 2908–2921. | DOI | MR | Zbl
and ,J.-M. Coron and P. Lissy, Local null controllability of the three-dimensional Navier−Stokes system with a distributed control having two vanishing components. To appear in Invent. Math. | MR | Zbl
Approximate controllability of the Stokes system on cylinders by external unidirectional forces. J. Math. Pures Appl. 9 (1997) 353–375. | DOI | MR | Zbl
and ,Some controllability results for the N-dimensional Navier−Stokes and Boussinesq systems with scalar controls. SIAM J. Control Optim. 45 (2006) 146–173. | DOI | MR | Zbl
, , and ,A.V. Fursikov O. Yu. Imanuvilov. Controllability of Evolution Equations. Lecture Notes #34. Seoul National University, Korea (1996). | MR | Zbl
Controllability of systems of Stokes equations with one control force: existence of insensitizing controls. Ann. Inst. Henri Poincaré Anal. Non Linéaire 24 (2007) 1029–1054. | DOI | Numdam | MR | Zbl
,Insensitizing controls for the Navier−Stokes equations. Ann. Inst. Henri Poincaré Anal. Non Linéaire 30 (2013) 825–844. | DOI | Numdam | MR | Zbl
,Remarks on exact controllability for the Navier−Stokes equation. ESAIM: COCV 6 (2001) 39–72. | Numdam | MR | Zbl
,Carleman estimates for parabolic equations with nonhomogeneous boundary conditions. Chin. Ann. Math. Ser. B 30 (2009) 333–378. | DOI | MR | Zbl
, and ,Unique continuation principle for systems of parabolic equations. ESAIM: COCV 16 (2010) 247–274. | Numdam | MR | Zbl
and ,O.A. Ladyzhenskaya, The mathematical theory of viscous incompressible flow, revised English edition, translated from the Russian by Richard A. Silverman. Gordon and Breach Science Publishers, New York, London (1963). | MR | Zbl
O.A. Ladyženskaja, V.A. Solonnikov and N.N. Ural’ceva, Linear and quasilinear equations of parabolic type, Translated from the Russian by S. Smith. Vol. 23 of Translations of Mathematical Monographs. American Mathematical Society, Providence, R.I. (1968). | MR | Zbl
J.-L. Lions, Quelques notions dans l’analyse et le contrôle de systèmes à données incomplètes (Somes notions in the analysis and control of systems with incomplete data). Proc. of the XIth congress on Differential Equations and Applications/First Congress on Applied Mathematics, Málaga (1989). Univ. Málaga (1990) 43–54. | MR | Zbl
J.-L. Lions, Sentinelles pour les systèmes distribués à données incomplètes (Sentinelles for Distributed Systems with Incomplete Data). Vol. 21 of Recherches en Mathématiques Appliquées (Research in Applied Mathematics). Masson, Paris (1992). | MR | Zbl
J.-L. Lions and E. Magenes, Problèmes aux limites non homogènes et applications, Vol. 2, Travaux et Recherches Mathématiques, No. 18. Dunod, Paris (1968). | MR | Zbl
J.-L. Lions and E. Zuazua, A generic uniqueness result for the Stokes system and its control theoretical consequences, Partial differential equations and applications. Vol. 177 of Lect. Notes Pure Appl. Math. Dekker, New York (1996) 221–235. | MR | Zbl
An example of -insensitizing controls for the heat equation with no intersecting observation and control regions. Appl. Math. Lett. 17 (2004) 927–932. | DOI | MR | Zbl
, and ,R. Pérez-García, Nuevos resultados de control para algunos problemas parabólicos acoplados no lineales: controlabilidad y controles insensibilizantes. Ph.D. thesis, University of Seville, Spain, 2004.
Unique continuation for some evolution equations. J. Differ. Equ. 66 (1987) 118–139. | DOI | MR | Zbl
and ,R. Temam, Navier−Stokes Equations, Theory and Numerical Analysis. Vol. 2 of Study Math. Appl. North-Holland, Amsterdam, New York, Oxford (1977). | MR | Zbl
Insensitizing controls for a semilinear heat equation. Commun. Partial Differ. Equ. 25 (2000) 39–72. | DOI | MR | Zbl
,Cited by Sources: