Global minimizers for axisymmetric multiphase membranes
ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 4, pp. 1014-1029.

We consider a Canham - Helfrich - type variational problem defined over closed surfaces enclosing a fixed volume and having fixed surface area. The problem models the shape of multiphase biomembranes. It consists of minimizing the sum of the Canham - Helfrich energy, in which the bending rigidities and spontaneous curvatures are now phase-dependent, and a line tension penalization for the phase interfaces. By restricting attention to axisymmetric surfaces and phase distributions, we extend our previous results for a single phase [R. Choksi and M. Veneroni, Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9] and prove existence of a global minimizer.

DOI : 10.1051/cocv/2012042
Classification : 49Q10, 49J45, 58E99, 53C80, 92C10
Mots clés : helfrich functional, biomembranes, global minimizers, axisymmetric surfaces, multicomponent vesicle
@article{COCV_2013__19_4_1014_0,
     author = {Choksi, Rustum and Morandotti, Marco and Veneroni, Marco},
     title = {Global minimizers for axisymmetric multiphase membranes},
     journal = {ESAIM: Control, Optimisation and Calculus of Variations},
     pages = {1014--1029},
     publisher = {EDP-Sciences},
     volume = {19},
     number = {4},
     year = {2013},
     doi = {10.1051/cocv/2012042},
     mrnumber = {3182678},
     zbl = {1283.49048},
     language = {en},
     url = {http://www.numdam.org/articles/10.1051/cocv/2012042/}
}
TY  - JOUR
AU  - Choksi, Rustum
AU  - Morandotti, Marco
AU  - Veneroni, Marco
TI  - Global minimizers for axisymmetric multiphase membranes
JO  - ESAIM: Control, Optimisation and Calculus of Variations
PY  - 2013
SP  - 1014
EP  - 1029
VL  - 19
IS  - 4
PB  - EDP-Sciences
UR  - http://www.numdam.org/articles/10.1051/cocv/2012042/
DO  - 10.1051/cocv/2012042
LA  - en
ID  - COCV_2013__19_4_1014_0
ER  - 
%0 Journal Article
%A Choksi, Rustum
%A Morandotti, Marco
%A Veneroni, Marco
%T Global minimizers for axisymmetric multiphase membranes
%J ESAIM: Control, Optimisation and Calculus of Variations
%D 2013
%P 1014-1029
%V 19
%N 4
%I EDP-Sciences
%U http://www.numdam.org/articles/10.1051/cocv/2012042/
%R 10.1051/cocv/2012042
%G en
%F COCV_2013__19_4_1014_0
Choksi, Rustum; Morandotti, Marco; Veneroni, Marco. Global minimizers for axisymmetric multiphase membranes. ESAIM: Control, Optimisation and Calculus of Variations, Tome 19 (2013) no. 4, pp. 1014-1029. doi : 10.1051/cocv/2012042. http://www.numdam.org/articles/10.1051/cocv/2012042/

[1] L. Ambrosio, N. Fusco and D. Pallara, Functions of Bounded Variation and Free Discontinuity Problems. Oxford Science Publications (2000). | MR

[2] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows in metric spaces and in the space of probability measures. Lectures in Mathematics, ETH Zürich. Birkhäuser Verlag, Basel (2005). | MR

[3] T. Baumgart, S. Das, W.W. Webb and J.T. Jenkins, Membrane elasticity in giant vesicles with fluid phase coexistence. Biophys. J. 89 (2005) 1067-1080.

[4] T. Baumgart, S.T. Hess and W.W. Webb, Imaging coexisting fluid domains in biomembrane models coupling curvature and line tension. Nature 425 (2003) 821-824.

[5] G. Bellettini and L. Mugnai, A varifolds representation of the relaxed elastica functional. J. Convex Anal. 14 (2007) 543-564. | MR

[6] P.B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell. J. Theor. Biol. 26 (1970) 61-80.

[7] R. Choksi and M. Veneroni, Global minimizers for the doubly-constrained Helfrich energy: the axisymmetric case. Calc. Var. Partial Differ. Equ. (2012). DOI:10.1007/s00526-012-0553-9. | MR

[8] L. Deseri, M.D. Piccioni and G. Zurlo, Derivation of a new free energy for biological membranes. Contin. Mech. Thermodyn. 20 (2008) 255-273. | MR

[9] M.P. Do Carmo, Differential geometry of curves and surfaces. Prentice-Hall Inc., Englewood Cliffs, N.J. (1976). Translated from the Portuguese. | MR

[10] C.M. Elliott and B. Stinner, Modeling and computation of two phase geometric biomembranes using surface finite elements. J. Comput. Phys. 229 (2010) 6585-6612. | MR

[11] C.M. Elliott and B. Stinner, A surface phase field model for two-phase biological membranes. SIAM J. Appl. Math. 70 (2010) 2904-2928. | MR

[12] E.L. Elson, E. Fried, J.E. Dolbow and G.M. Genin, Phase separation in biological membranes: integration of theory and experiment. Annu. Rev. Biophys. 39 (2010) 207-226.

[13] E. Evans, Bending resistance and chemically induced moments in membrane bilayers. Biophys. J. 14 (1974) 923-931.

[14] L.C. Evans and R.F. Gariepy, Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press (1992). | MR

[15] W. Helfrich, Elastic properties of lipid bilayers: Theory and possible experiments. Z. Naturforsch. Teil C 28 (1973) 693-703.

[16] M. Helmers, Convergence of an approximation for rotationally symmetric two-phase lipid bilayer membranes. Technical report, Institute for Applied Mathematics, University of Bonn (2011).

[17] M. Helmers, Kinks in two-phase lipid bilayer membranes. Calc. Var. Partial Differ. Equ. (2012). DOI: 10.1007/s00526-012-0550-z. | MR

[18] J.E. Hutchinson, Second fundamental form for varifolds and the existence of surfaces minimising curvature. Indiana Univ. Math. J. 35 (1986) 45-71. | MR

[19] F. Jülicher and R. Lipowsky, Domain-induced budding of vesicles. Phys. Rev. Lett. 70 (1993) 2964-2967.

[20] F. Jülicher and R. Lipowsky, Shape transformations of vesicles with intramembrane domains. Phys. Rev. E 53 (1996) 2670-2683.

[21] J.S. Lowengrub, A. Rätz and A. Voigt, Phase-field modeling of the dynamics of multicomponent vesicles: spinodal decomposition, coarsening, budding, and fission. Phys. Rev. E 79 (2009) 0311926. | MR

[22] R. Moser, A generalization of Rellich's theorem and regularity of varifolds minimizing curvature. Technical Report 72, Max-Planck-Institut for Mathematics in the Sciences (2001).

[23] U. Seifert, Configurations of fluid membranes and vesicles. Adv. Phys. 46 (1997) 13-137.

[24] J.S. Sohn, Y.-H. Tseng, S. Li, A. Voigt and J.S. Lowengrub, Dynamics of multicomponent vesicles in a viscous fluid. J. Comput. Phys. 229 (2010) 119-144. | MR

[25] R.H. Templer, B.J. Khoo and J.M. Seddon, Gaussian curvature modulus of an amphiphilic monolayer. Langmuir 14 (1998) 7427-7434.

[26] X. Wang and Q. Du, Modelling and simulations of multi-component lipid membranes and open membranes via diffuse interface approaches. J. Math. Biol. 56 (2008) 347-371. | MR

[27] T.J. Willmore, Riemannian geometry. Clarendon Press, Oxford (1993). | MR

[28] G. Zurlo, Material and Geometric Phase Transitions in Biological Membranes. Ph.D. thesis, University of Pisa (2006).

Cité par Sources :